File size: 14,820 Bytes
287c9ca
9d84ba9
8583908
9840152
9d84ba9
990e23e
287c9ca
8583908
 
 
9840152
5e4272a
9840152
5470dfc
287c9ca
9d84ba9
29c2122
 
 
 
 
9840152
5e4272a
9840152
29c2122
9840152
09d5c67
5e4272a
29c2122
 
 
 
 
 
 
 
 
 
 
b97795f
5e4272a
29c2122
50c620f
29c2122
 
 
 
5e4272a
 
29c2122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e4272a
 
29c2122
 
 
 
9d84ba9
9840152
 
 
29c2122
 
9840152
 
29c2122
5e4272a
 
9840152
29c2122
9840152
 
29c2122
9840152
 
29c2122
5e4272a
29c2122
9840152
b97795f
29c2122
41b47a8
09d5c67
9d84ba9
 
 
 
29c2122
5e4272a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d84ba9
5e4272a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
990e23e
5e4272a
 
 
29c2122
 
5e4272a
 
9840152
 
5e4272a
 
 
 
9840152
5e4272a
 
 
29c2122
5e4272a
9840152
29c2122
9840152
 
 
5e4272a
29c2122
 
 
 
 
9840152
 
5e4272a
9d84ba9
5e4272a
8583908
5e4272a
 
8583908
 
9d84ba9
29c2122
8583908
29c2122
 
 
 
5e4272a
29c2122
 
9d84ba9
8583908
5e4272a
29c2122
 
9d84ba9
29c2122
9d84ba9
29c2122
 
5e4272a
9d84ba9
9840152
9d84ba9
29c2122
9d84ba9
29c2122
5e4272a
29c2122
 
 
9840152
 
 
 
 
 
 
29c2122
 
8583908
 
b97795f
5e4272a
 
9d84ba9
5e4272a
9d84ba9
29c2122
 
5e4272a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip, 
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx 
import numpy as np
import os
import openai
import requests
import io
import time
import random 
from elevenlabs import generate as elevenlabs_generate_audio, set_api_key as elevenlabs_set_api_key_func

class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media"):
        self.output_dir = output_dir; os.makedirs(self.output_dir, exist_ok=True)
        self.font_filename="arial.ttf"; self.font_path_in_container=f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
        self.font_size_pil=20; self.video_overlay_font_size=30; self.video_overlay_font_color='white'; self.video_overlay_font='Arial-Bold'
        try: self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil); print(f"Placeholder font: {self.font_path_in_container}.")
        except IOError: print(f"Warn: Placeholder font '{self.font_path_in_container}' fail. Default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
        self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024" 
        self.video_frame_size = (1280, 720)
        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_voice_id = "Rachel"
        self.pexels_api_key = None; self.USE_PEXELS = False

    def set_openai_api_key(self,k): 
        self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
        print(f"DALL-E ({self.dalle_model}) {'Ready' if k else 'Disabled'}.")
    def set_elevenlabs_api_key(self,k):
        self.elevenlabs_api_key=k
        if k: 
            try: elevenlabs_set_api_key_func(k); self.USE_ELEVENLABS=True; print("ElevenLabs Ready.")
            except Exception as e: print(f"ElevenLabs key set error: {e}. Disabled."); self.USE_ELEVENLABS=False
        else: self.USE_ELEVENLABS=False
    def set_pexels_api_key(self,k):
        self.pexels_api_key=k; self.USE_PEXELS=bool(k)
        print(f"Pexels {'Ready' if k else 'Disabled'}.")

    def _get_text_dimensions(self,t,f): 
        if not t: return 0,self.font_size_pil
        try:
            if hasattr(f,'getbbox'): bb=f.getbbox(t);w=bb[2]-bb[0];h=bb[3]-bb[1];return w,h if h>0 else self.font_size_pil
            elif hasattr(f,'getsize'): w,h=f.getsize(t);return w,h if h>0 else self.font_size_pil
            else: return int(len(t)*self.font_size_pil*.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
        except: return int(len(t)*self.font_size_pil*.6),int(self.font_size_pil*1.2)
    
    def _create_placeholder_image_content(self,td,fn,s=(1280,720)): 
        img=Image.new('RGB',s,color=(20,20,40));d=ImageDraw.Draw(img);p=25;max_w=s[0]-(2*p);ls=[];
        if not td: td="(Placeholder)"
        ws=td.split();cl=""
        for w in ws:
            tl=cl+w+" ";
            if self._get_text_dimensions(tl,self.font)[0]<=max_w: cl=tl
            else:
                if cl:ls.append(cl.strip())
                cl=w+" "
        if cl:ls.append(cl.strip())
        if not ls:ls.append("(Text err)")
        _,sh=self._get_text_dimensions("Ay",self.font);sh=sh if sh>0 else self.font_size_pil+2
        max_ls=min(len(ls),(s[1]-2*p)//(sh+2));
        yt=p+(s[1]-2*p-max_ls*(sh+2))/2.0
        for i in range(max_ls):
            line=ls[i];lw,_=self._get_text_dimensions(line,self.font);xt=(s[0]-lw)/2.0
            d.text((xt,yt),line,font=self.font,fill=(200,200,180));yt+=sh+2
            if i==6 and max_ls>7:d.text((xt,yt),"...",font=self.font,fill=(200,200,180));break
        fp=os.path.join(self.output_dir,fn);
        try:img.save(fp);return fp
        except Exception as e:print(f"Err placeholder save: {e}");return None

    def _search_pexels_image(self, query, output_filename):
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        headers = {"Authorization": self.pexels_api_key}
        params = {"query": query, "per_page": 3, "orientation": "landscape", "size": "large"}
        pexels_filename = output_filename.replace(".png", f"_pexels_{random.randint(100,999)}.jpg")
        filepath = os.path.join(self.output_dir, pexels_filename)
        try:
            print(f"Searching Pexels for: '{query}'")
            query_parts = query.split(); effective_query = " ".join(query_parts[:5])
            params["query"] = effective_query
            response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=15)
            response.raise_for_status(); data = response.json()
            if data.get("photos"):
                photo_url = data["photos"][0]["src"]["large2x"] 
                image_response = requests.get(photo_url, timeout=45); image_response.raise_for_status()
                img_data = Image.open(io.BytesIO(image_response.content))
                if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                img_data.save(filepath); print(f"Pexels image saved: {filepath}"); return filepath
            else: print(f"No photos on Pexels for: '{effective_query}'")
        except Exception as e: print(f"Pexels error for '{query}': {e}")
        return None

    def generate_image_visual(self, image_prompt_text, scene_data, scene_identifier_filename):
        filepath = os.path.join(self.output_dir, scene_identifier_filename)
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_retries = 2
            for attempt in range(max_retries):
                try:
                    print(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:120]}...")
                    client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
                    response = client.images.generate(
                        model=self.dalle_model, 
                        prompt=image_prompt_text, 
                        n=1, 
                        size=self.image_size_dalle3, 
                        quality="hd", 
                        response_format="url", 
                        style="vivid"
                    )
                    image_url = response.data[0].url
                    revised_prompt = getattr(response.data[0], 'revised_prompt', None)
                    if revised_prompt: 
                        print(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
                    
                    image_response = requests.get(image_url, timeout=120)
                    image_response.raise_for_status()
                    img_data = Image.open(io.BytesIO(image_response.content))
                    if img_data.mode != 'RGB': 
                        img_data = img_data.convert('RGB')
                    
                    img_data.save(filepath)
                    print(f"AI Image (DALL-E) saved: {filepath}")
                    return filepath 
                
                except openai.RateLimitError as e: 
                    print(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s...")
                    time.sleep(5 * (attempt + 1))
                    # CORRECTED INDENTATION FOR THIS BLOCK
                    if attempt == max_retries - 1: 
                        print("Max retries reached for RateLimitError.")
                        break # Break from the for loop if max retries hit for RateLimitError
                    else:
                        continue # Go to the next attempt in the for loop
                
                except openai.APIError as e: 
                    print(f"OpenAI API Error: {e}")
                    break # Break from loop, will try Pexels/placeholder
                except requests.exceptions.RequestException as e: 
                    print(f"Requests Error (DALL-E image download): {e}")
                    break # Break from loop
                except Exception as e: 
                    print(f"Generic error (DALL-E gen): {e}")
                    break # Break from loop
            
            # This code block is reached if the 'for' loop completes (max retries) 
            # or if it 'break's due to an error other than RateLimitError (where it 'continue's)
            print("DALL-E generation failed or max retries reached. Trying Pexels fallback...")
            pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋…', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
            pexels_path = self._search_pexels_image(pexels_query_text, scene_identifier_filename)
            if pexels_path: 
                return pexels_path
            
            print("Pexels also failed/disabled. Using placeholder.")
            return self._create_placeholder_image_content(
                f"[AI/Pexels Failed] Original Prompt: {image_prompt_text[:100]}...", 
                scene_identifier_filename, size=self.video_frame_size
            )
        else: # AI image generation not enabled
            return self._create_placeholder_image_content(
                image_prompt_text, scene_identifier_filename, size=self.video_frame_size
            )

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        if not self.USE_ELEVENLABS or not self.elevenlabs_api_key or not text_to_narrate:
            print("ElevenLabs disabled/no text. Skipping audio."); return None
        audio_filepath = os.path.join(self.output_dir, output_filename)
        try:
            print(f"Generating ElevenLabs audio (Voice: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
            # elevenlabs_set_api_key_func(self.elevenlabs_api_key) # Set key if library requires it per call
            audio_data = elevenlabs_generate_audio(text=text_to_narrate, voice=self.elevenlabs_voice_id, model="eleven_multilingual_v2")
            with open(audio_filepath, "wb") as f: f.write(audio_data)
            print(f"ElevenLabs audio saved: {audio_filepath}"); return audio_filepath
        except ImportError: print("ElevenLabs library not found. Install it.")
        except Exception as e: print(f"Error ElevenLabs audio: {e}")
        return None

    def create_video_from_images(self, image_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24, duration_per_image=4.5):
        if not image_data_list: return None
        print(f"Creating video from {len(image_data_list)} image sets.")
        processed_clips = []
        narration_audio_clip = None 
        final_video_clip_obj = None 

        for i, data in enumerate(image_data_list):
            img_path, scene_num, key_action = data.get('path'), data.get('scene_num', i+1), data.get('key_action', '')
            if not (img_path and os.path.exists(img_path)): print(f"Img not found: {img_path}"); continue
            try:
                pil_img = Image.open(img_path); 
                if pil_img.mode != 'RGB': pil_img = pil_img.convert('RGB')
                img_copy = pil_img.copy()
                img_copy.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS)
                canvas = Image.new('RGB', self.video_frame_size, (random.randint(0,15), random.randint(0,15), random.randint(0,15))) 
                xo, yo = (self.video_frame_size[0]-img_copy.width)//2, (self.video_frame_size[1]-img_copy.height)//2
                canvas.paste(img_copy, (xo,yo))
                frame_np = np.array(canvas)
                img_clip = ImageClip(frame_np).set_duration(duration_per_image)
                end_scale = random.uniform(1.05, 1.12) # Ken Burns zoom
                img_clip = img_clip.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / duration_per_image))
                img_clip = img_clip.set_position('center')
                if key_action:
                    txt_clip = TextClip(f"Scene {scene_num}\n{key_action}", fontsize=self.video_overlay_font_size, 
                                        color=self.video_overlay_font_color, font=self.video_overlay_font,
                                        bg_color='rgba(10,10,20,0.75)', method='caption', align='West',
                                        size=(self.video_frame_size[0]*0.9, None), kerning=-1, stroke_color='black', stroke_width=1
                                       ).set_duration(duration_per_image - 1.0).set_start(0.5).set_position(('center', 0.9), relative=True)
                    final_scene_clip = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size)
                else: final_scene_clip = img_clip
                processed_clips.append(final_scene_clip)
            except Exception as e: print(f"Error clip for {img_path}: {e}.")
        
        if not processed_clips: print("No clips for video."); return None
        transition = 0.8 
        final_video_clip_obj = concatenate_videoclips(processed_clips, padding=-transition, method="compose")
        if final_video_clip_obj.duration > transition*2: 
            final_video_clip_obj = final_video_clip_obj.fx(vfx.fadein, transition).fx(vfx.fadeout, transition)
        
        if overall_narration_path and os.path.exists(overall_narration_path):
            try:
                narration_audio_clip = AudioFileClip(overall_narration_path)
                final_video_clip_obj = final_video_clip_obj.set_audio(narration_audio_clip)
                if narration_audio_clip.duration < final_video_clip_obj.duration:
                    final_video_clip_obj = final_video_clip_obj.subclip(0, narration_audio_clip.duration)
                print("Overall narration added.")
            except Exception as e: print(f"Error adding narration: {e}.")
        
        output_path = os.path.join(self.output_dir, output_filename)
        try:
            final_video_clip_obj.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', # 'medium' or 'slow'
                                        audio_codec='aac',
                                        temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'), 
                                        remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k")
            print(f"Video created: {output_path}"); return output_path
        except Exception as e: print(f"Error writing video: {e}"); return None
        finally:
            for c in processed_clips: 
                if hasattr(c, 'close'): c.close()
            if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
            if final_video_clip_obj and hasattr(final_video_clip_obj, 'close'): final_video_clip_obj.close()