File size: 35,717 Bytes
287c9ca e0b9b11 92cb699 5089920 92cb699 5089920 9840152 5089920 990e23e 92cb699 5089920 92cb699 200c5c4 63525c7 f13d4b2 5089920 f13d4b2 5089920 f13d4b2 5089920 f13d4b2 5089920 e0b9b11 63525c7 5089920 63525c7 5089920 4c2220b f13d4b2 287c9ca 92cb699 e0b9b11 5089920 63525c7 5089920 e0b9b11 63525c7 e0b9b11 63525c7 e0b9b11 f02ab98 5089920 63525c7 e0b9b11 5089920 92cb699 5089920 e0b9b11 f02ab98 5089920 63525c7 5089920 200c5c4 09d5c67 5089920 e0b9b11 63525c7 e0b9b11 92cb699 f13d4b2 5089920 63525c7 5089920 e0b9b11 63525c7 5089920 63525c7 5089920 63525c7 5089920 e0b9b11 5089920 50c620f 63525c7 e0b9b11 63525c7 e0b9b11 63525c7 5089920 e0b9b11 63525c7 92cb699 5089920 92cb699 29c2122 5089920 e0b9b11 63525c7 e0b9b11 200c5c4 e0b9b11 63525c7 5089920 92cb699 5089920 92cb699 f13d4b2 e0b9b11 63525c7 9840152 200c5c4 5089920 92cb699 9840152 92cb699 f13d4b2 63525c7 92cb699 e0b9b11 92cb699 9840152 b97795f 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 09d5c67 92cb699 9d84ba9 200c5c4 5089920 92cb699 5089920 92cb699 5089920 63525c7 5089920 63525c7 92cb699 63525c7 5089920 63525c7 29c2122 e0b9b11 63525c7 f13d4b2 e0b9b11 f13d4b2 9840152 754c854 5089920 200c5c4 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 9840152 5089920 63525c7 5089920 63525c7 5089920 92cb699 63525c7 5089920 63525c7 8583908 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 5089920 63525c7 92cb699 63525c7 92cb699 5089920 63525c7 5089920 b97795f 63525c7 5089920 63525c7 5089920 63525c7 200c5c4 63525c7 5089920 63525c7 5089920 63525c7 92cb699 5089920 63525c7 5089920 63525c7 5089920 754c854 63525c7 5e4272a 5089920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'): # Pillow 8
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) # Set default logging level for this module
# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
logger.info("ElevenLabs client components imported successfully.")
except Exception as e_eleven:
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio generation will be disabled.")
# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False
RunwayMLClient = None # Placeholder for the actual RunwayML client class
try:
# Example: from runwayml import RunwayClient as ImportedRunwayMLClient
# RunwayMLClient = ImportedRunwayMLClient
# RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK import is a placeholder. Actual SDK needed for Runway features.")
except ImportError:
logger.warning("RunwayML SDK (placeholder) not found. RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML features disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "arial.ttf"
font_paths_to_try = [
self.font_filename,
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", # Common on Linux
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", # Common on Linux
f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS
f"C:/Windows/Fonts/arial.ttf", # Windows
f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}" # Custom container path
]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'Liberation-Sans-Bold' # For MoviePy TextClip (ImageMagick name)
try:
if self.font_path_pil:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
logger.info(f"Pillow font loaded: {self.font_path_pil}.")
else: # Fallback to default if no path found
self.font = ImageFont.load_default()
logger.warning("Custom Pillow font not found from paths. Using default. Text rendering might be basic.")
self.font_size_pil = 10 # Default font is smaller
except IOError as e_font: # Catch specific IOError for font loading
logger.error(f"Pillow font loading IOError for '{self.font_path_pil if self.font_path_pil else 'default'}': {e_font}. Using default.")
self.font = ImageFont.load_default()
self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720) # Standard HD 16:9
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False
self.runway_client = None
logger.info("VisualEngine initialized.")
def set_openai_api_key(self,k):
self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled (no API key).'}")
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
self.elevenlabs_api_key=api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
self.USE_ELEVENLABS=bool(self.elevenlabs_client)
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no API key or SDK issue).")
def set_pexels_api_key(self,k):
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled (no API key).'}")
def set_runway_api_key(self, k):
self.runway_api_key = k
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
try:
# self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
self.USE_RUNWAYML = True # Assume success for placeholder with hypothetical SDK
logger.info(f"RunwayML Client (Placeholder with SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
except Exception as e: logger.error(f"RunwayML client (Placeholder with SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
elif k: # API key provided, but SDK might not be used/imported (e.g., direct HTTP)
self.USE_RUNWAYML = True
logger.info("RunwayML API Key set. Using direct API calls or placeholder (SDK not fully integrated/imported).")
else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
def _get_text_dimensions(self,text_content,font_obj):
if not text_content: return 0,self.font_size_pil
try:
if hasattr(font_obj,'getbbox'):
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
return w, h if h > 0 else self.font_size_pil
elif hasattr(font_obj,'getsize'):
w,h=font_obj.getsize(text_content)
return w, h if h > 0 else self.font_size_pil
else: return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
def _create_placeholder_image_content(self,text_description,filename,size=None):
# (No significant changes from your previous correct version)
if size is None: size = self.video_frame_size
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
if not text_description: text_description="(Placeholder: No prompt text)"
words=text_description.split();current_line=""
for word in words:
test_line=current_line+word+" ";
if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
else:
if current_line: lines.append(current_line.strip());
current_line=word+" "
if current_line.strip(): lines.append(current_line.strip())
if not lines and text_description: lines.append(text_description[:int(max_w//(self.font_size_pil*0.6 +1))]+"..." if text_description else "(Text too long)")
elif not lines: lines.append("(Placeholder Text Error)")
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
if max_lines_to_display <=0: max_lines_to_display = 1
y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
y_text = y_text_start
for i in range(max_lines_to_display):
line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
if i==6 and max_lines_to_display > 7: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
filepath=os.path.join(self.output_dir,filename);
try:img.save(filepath);return filepath
except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
def _search_pexels_image(self, query, output_filename_base):
# (No significant changes from your previous correct version)
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Searching Pexels for: '{query}'"); effective_query = " ".join(query.split()[:5]); params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status(); data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_url = data["photos"][0]["src"]["large2x"]
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); logger.info(f"Pexels image saved: {filepath}"); return filepath
else: logger.info(f"No photos found on Pexels for query: '{effective_query}'")
except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
return None
def _generate_video_clip_with_runwayml(self, prompt_text, scene_identifier_filename_base, target_duration_seconds=4, input_image_path=None):
if not self.USE_RUNWAYML or not self.runway_api_key:
logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
return None
output_video_filename = scene_identifier_filename_base.replace(".png", ".mp4") # Ensure .mp4 extension
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
# --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL - NEEDS IMPLEMENTATION) ---
# ... (Your actual RunwayML API call logic would go here) ...
# --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
logger.warning("Using PLACEHOLDER video generation for RunwayML as actual API calls are not implemented.")
return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
if size is None: size = self.video_frame_size
filepath = os.path.join(self.output_dir, filename)
txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
bg_color='black', size=size, method='caption').set_duration(duration)
try:
txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None)
logger.info(f"Placeholder video saved: {filepath}")
return filepath
except Exception as e: logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True); return None
finally:
if hasattr(txt_clip, 'close'): txt_clip.close()
def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text, 'error_message': 'Generation not attempted'}
if generate_as_video_clip and self.USE_RUNWAYML:
logger.info(f"Attempting RunwayML video clip generation for {base_name}")
video_path = self._generate_video_clip_with_runwayml(
image_prompt_text, base_name,
target_duration_seconds=runway_target_duration,
input_image_path=input_image_for_runway
)
if video_path and os.path.exists(video_path):
asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
return asset_info # Successfully generated video
else:
logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image.")
asset_info['error_message'] = "RunwayML video generation failed."
# Fall through to image generation
# Image Generation (DALL-E, Pexels, Placeholder)
image_filename_with_ext = base_name + ".png" # Ensure .png for image
filepath = os.path.join(self.output_dir, image_filename_with_ext)
asset_info['type'] = 'image' # Tentatively set type to image for this path
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_retries = 2
for attempt in range(max_retries):
try:
logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
if revised_prompt: logger.info(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
image_response = requests.get(image_url, timeout=120); image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content));
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
asset_info = {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
return asset_info
except openai.RateLimitError as e_rate: logger.warning(f"OpenAI Rate Limit: {e_rate}. Retrying..."); time.sleep(5 * (attempt + 1)); asset_info['error_message'] = str(e_rate)
except openai.APIError as e_api: logger.error(f"OpenAI API Error: {e_api}"); asset_info['error_message'] = str(e_api); break
except requests.exceptions.RequestException as e_req: logger.error(f"Requests Error (DALL-E download): {e_req}"); asset_info['error_message'] = str(e_req); break
except Exception as e_gen: logger.error(f"Generic error (DALL-E gen): {e_gen}", exc_info=True); asset_info['error_message'] = str(e_gen); break
if attempt == max_retries - 1: logger.error("Max retries for DALL-E RateLimitError."); break
if asset_info['error']: logger.warning("DALL-E generation failed. Trying Pexels fallback...")
if self.USE_PEXELS and (asset_info['error'] or not (self.USE_AI_IMAGE_GENERATION and self.openai_api_key)): # Try Pexels if DALL-E failed or disabled
pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋
', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext)
if pexels_path:
asset_info = {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
return asset_info
asset_info['error_message'] = (asset_info.get('error_message', "") + " Pexels search also failed or disabled.").strip()
if not asset_info['error']: logger.warning("Pexels search failed or disabled.") # If DALL-E wasn't even tried
# Fallback to placeholder if all else fails
if asset_info['error']: # Only create placeholder if previous steps failed
logger.warning("All generation methods failed. Using placeholder image.")
placeholder_prompt_text = asset_info.get('prompt_used', image_prompt_text) # Use the prompt that was attempted
placeholder_path = self._create_placeholder_image_content(f"[Fallback Placeholder] {placeholder_prompt_text[:100]}...", image_filename_with_ext)
if placeholder_path:
asset_info = {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': placeholder_prompt_text}
return asset_info
else: # Final failure
asset_info['error_message'] = (asset_info.get('error_message', "") + " Placeholder creation also failed.").strip()
return asset_info # Return whatever state asset_info is in (could be error=True)
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
# (No significant changes from your previous correct version, ensure error handling is robust)
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
logger.info("ElevenLabs conditions not met (API key, client init, or text). Skipping audio.")
return None
audio_filepath = os.path.join(self.output_dir, output_filename)
try:
logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
audio_stream_method = None
if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
audio_stream_method = self.elevenlabs_client.text_to_speech.stream; logger.info("Using elevenlabs_client.text_to_speech.stream()")
elif hasattr(self.elevenlabs_client, 'generate_stream') : audio_stream_method = self.elevenlabs_client.generate_stream; logger.info("Using elevenlabs_client.generate_stream()")
elif hasattr(self.elevenlabs_client, 'generate'):
logger.info("Using elevenlabs_client.generate() (non-streaming).")
voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
audio_bytes = self.elevenlabs_client.generate(text=text_to_narrate, voice=voice_param, model="eleven_multilingual_v2")
with open(audio_filepath, "wb") as f: f.write(audio_bytes)
logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}"); return audio_filepath
else: logger.error("No recognized audio generation method found on ElevenLabs client."); return None
if audio_stream_method:
voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'model_dump'): # Pydantic v2 for elevenlabs sdk >=1.0
voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
elif self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'dict'): # Pydantic v1 for elevenlabs sdk <1.0
voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict()
elif self.elevenlabs_voice_settings : voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
audio_data_iterator = audio_stream_method(text=text_to_narrate, model_id="eleven_multilingual_v2", **voice_param_for_stream)
with open(audio_filepath, "wb") as f:
for chunk in audio_data_iterator:
if chunk: f.write(chunk)
logger.info(f"ElevenLabs audio (streamed) saved: {audio_filepath}"); return audio_filepath
except AttributeError as ae: logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method/params might be different.", exc_info=True)
except Exception as e: logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list:
logger.warning("No asset data provided for animatic assembly.")
return None
processed_moviepy_clips = []
narration_audio_clip = None
final_composite_clip = None # Renamed to avoid conflict in finally block
total_video_duration_from_assets = sum(item.get('duration', 4.5) for item in asset_data_list)
logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}. Approx total duration: {total_video_duration_from_assets:.2f}s.")
for i, asset_info in enumerate(asset_data_list):
asset_path = asset_info.get('path')
asset_type = asset_info.get('type')
target_scene_duration = asset_info.get('duration', 4.5)
scene_num = asset_info.get('scene_num', i + 1)
key_action = asset_info.get('key_action', '')
logger.info(f"Processing Scene {scene_num}: Path='{asset_path}', Type='{asset_type}', Target Duration='{target_scene_duration}'s")
if not (asset_path and os.path.exists(asset_path)):
logger.warning(f"Asset not found for Scene {scene_num}: {asset_path}. Skipping.")
continue
if target_scene_duration <= 0:
logger.warning(f"Scene {scene_num} has invalid duration ({target_scene_duration}s). Skipping.")
continue
current_clip_for_scene = None
try:
if asset_type == 'image':
logger.debug(f"S{scene_num}: Loading image asset from {asset_path}")
pil_img = Image.open(asset_path)
logger.debug(f"S{scene_num}: Image loaded. Mode: {pil_img.mode}, Size: {pil_img.size}")
# Ensure image is RGBA for consistent pasting, then convert to RGB for MoviePy
if pil_img.mode != 'RGBA':
pil_img = pil_img.convert('RGBA') # Convert to RGBA to handle transparency uniformly
img_copy = pil_img.copy()
resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
img_copy.thumbnail(self.video_frame_size, resample_filter)
logger.debug(f"S{scene_num}: Image thumbnailed to: {img_copy.size}")
# Create an RGBA canvas, paste the (potentially RGBA) image onto it
canvas_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0)) # Fully transparent
xo, yo = (self.video_frame_size[0] - img_copy.width) // 2, (self.video_frame_size[1] - img_copy.height) // 2
canvas_rgba.paste(img_copy, (xo, yo), img_copy) # Paste using image's own alpha
logger.debug(f"S{scene_num}: Image pasted onto RGBA canvas.")
# Now create a final RGB canvas and paste the RGBA canvas onto it, effectively blending alpha
final_rgb_canvas = Image.new("RGB", self.video_frame_size, (random.randint(0,5), random.randint(0,5), random.randint(0,5))) # Dark background
final_rgb_canvas.paste(canvas_rgba, mask=canvas_rgba.split()[3]) # Use alpha channel of canvas_rgba as mask
debug_canvas_path = os.path.join(self.output_dir, f"debug_final_rgb_canvas_scene_{scene_num}.png")
try: final_rgb_canvas.save(debug_canvas_path); logger.info(f"DEBUG: Saved final RGB canvas for scene {scene_num} to {debug_canvas_path}")
except Exception as e_save_canvas: logger.error(f"DEBUG: Failed to save final RGB canvas for scene {scene_num}: {e_save_canvas}")
frame_np = np.array(final_rgb_canvas)
logger.debug(f"S{scene_num}: Final RGB canvas to NumPy. Shape: {frame_np.shape}, Dtype: {frame_np.dtype}")
if frame_np.size == 0: logger.error(f"S{scene_num}: NumPy array for ImageClip is empty! Skipping."); continue
current_clip_base = ImageClip(frame_np, transparent=False, ismask=False).set_duration(target_scene_duration)
logger.debug(f"S{scene_num}: Base ImageClip created.")
current_clip_for_scene = current_clip_base
try: # Ken Burns
end_scale = random.uniform(1.03, 1.08)
current_clip_for_scene = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration)).set_position('center')
logger.debug(f"S{scene_num}: Ken Burns effect applied.")
except Exception as e_fx: logger.error(f"S{scene_num}: Ken Burns error: {e_fx}. Using static.", exc_info=False); current_clip_for_scene = current_clip_base
elif asset_type == 'video':
logger.debug(f"S{scene_num}: Loading video asset from {asset_path}")
# Ensure target_resolution is (height, width) for VideoFileClip resizing parameter
source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None)
temp_clip = source_video_clip # Work with a temporary variable
if source_video_clip.duration > target_scene_duration:
temp_clip = source_video_clip.subclip(0, target_scene_duration)
elif source_video_clip.duration < target_scene_duration:
if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1:
temp_clip = source_video_clip.loop(duration=target_scene_duration)
else: # Play once, MoviePy will pad if needed during concatenation if durations differ
temp_clip = source_video_clip.set_duration(source_video_clip.duration) # Keep its own duration
logger.info(f"Video clip for S{scene_num} ({source_video_clip.duration:.2f}s) is shorter than target animatic duration ({target_scene_duration:.2f}s). It will play once at its native length.")
# Crucially, ensure the clip used in concatenation has the target_scene_duration
current_clip_for_scene = temp_clip.set_duration(target_scene_duration)
if current_clip_for_scene.size != list(self.video_frame_size):
logger.debug(f"S{scene_num}: Resizing video clip from {current_clip_for_scene.size} to {self.video_frame_size}")
current_clip_for_scene = current_clip_for_scene.resize(self.video_frame_size)
# Only close source_video_clip if it's different from what we are keeping (e.g., after subclip)
# And if it's not the same object as current_clip_for_scene
if source_video_clip is not current_clip_for_scene and hasattr(source_video_clip, 'close'):
source_video_clip.close()
logger.debug(f"S{scene_num}: Video asset processed. Final duration for scene: {current_clip_for_scene.duration:.2f}s")
else: logger.warning(f"S{scene_num}: Unknown asset type '{asset_type}'. Skipping."); continue
if current_clip_for_scene and key_action: # Add text overlay
logger.debug(f"S{scene_num}: Adding text overlay: '{key_action}'")
text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
if text_overlay_duration > 0:
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}",
fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color,
font=self.video_overlay_font, bg_color='rgba(10,10,20,0.7)',
method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
kerning=-1, stroke_color='black', stroke_width=1.5
).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
current_clip_for_scene = CompositeVideoClip([current_clip_for_scene, txt_clip], size=self.video_frame_size, use_bgclip=True)
logger.debug(f"S{scene_num}: Text overlay composited.")
if current_clip_for_scene: processed_moviepy_clips.append(current_clip_for_scene); logger.info(f"S{scene_num}: Asset successfully processed and added to final list.")
except Exception as e: logger.error(f"Error processing asset for Scene {scene_num} ({asset_path}): {e}", exc_info=True)
finally: # Ensure individual clips are closed if they were opened and an error occurred mid-processing
if current_clip_for_scene and asset_type == 'video' and hasattr(current_clip_for_scene, 'reader') and current_clip_for_scene.reader:
if hasattr(current_clip_for_scene, 'close'): current_clip_for_scene.close()
if not processed_moviepy_clips: logger.warning("No MoviePy clips processed. Aborting animatic assembly."); return None
transition_duration = 0.75
try:
if len(processed_moviepy_clips) > 1: final_composite_clip = concatenate_videoclips(processed_moviepy_clips, padding=-transition_duration, method="compose")
elif processed_moviepy_clips: final_composite_clip = processed_moviepy_clips[0]
else: logger.error("No clips for final concatenation."); return None
if final_composite_clip.duration > transition_duration * 2: final_composite_clip = final_composite_clip.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
elif final_composite_clip.duration > 0: final_composite_clip = final_composite_clip.fx(vfx.fadein, min(transition_duration, final_composite_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_clip.duration > 0:
try:
narration_audio_clip = AudioFileClip(overall_narration_path)
if narration_audio_clip.duration < final_composite_clip.duration:
logger.info(f"Narration ({narration_audio_clip.duration:.2f}s) shorter than visuals ({final_composite_clip.duration:.2f}s). Trimming video.")
final_composite_clip = final_composite_clip.subclip(0, narration_audio_clip.duration)
final_composite_clip = final_composite_clip.set_audio(narration_audio_clip); logger.info("Overall narration added.")
except Exception as e: logger.error(f"Adding narration error: {e}", exc_info=True)
elif final_composite_clip.duration <= 0 : logger.warning("Video has no duration. Audio not added.")
if final_composite_clip and final_composite_clip.duration > 0:
output_path = os.path.join(self.output_dir, output_filename)
logger.info(f"Writing final animatic: {output_path} (Duration: {final_composite_clip.duration:.2f}s)")
final_composite_clip.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k")
logger.info(f"Animatic created: {output_path}"); return output_path
else: logger.error("Final animatic clip invalid. Not writing file."); return None
except Exception as e: logger.error(f"Animatic writing error: {e}", exc_info=True); return None
finally:
for clip_obj in processed_moviepy_clips:
if hasattr(clip_obj, 'close'): clip_obj.close()
if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
if final_composite_clip and hasattr(final_composite_clip, 'close'): final_composite_clip.close() |