File size: 35,717 Bytes
287c9ca
e0b9b11
92cb699
 
 
5089920
 
 
 
 
 
92cb699
 
5089920
9840152
5089920
990e23e
92cb699
 
 
 
 
5089920
92cb699
200c5c4
 
63525c7
f13d4b2
5089920
f13d4b2
5089920
 
 
f13d4b2
5089920
f13d4b2
5089920
e0b9b11
 
 
63525c7
5089920
63525c7
5089920
 
 
 
 
 
 
 
 
 
 
 
 
4c2220b
f13d4b2
287c9ca
92cb699
e0b9b11
 
5089920
 
 
 
63525c7
 
 
 
 
5089920
 
 
 
e0b9b11
63525c7
e0b9b11
 
63525c7
 
 
 
 
 
 
 
 
 
 
e0b9b11
f02ab98
5089920
63525c7
e0b9b11
 
5089920
92cb699
5089920
 
 
e0b9b11
f02ab98
5089920
63525c7
5089920
200c5c4
09d5c67
5089920
e0b9b11
63525c7
e0b9b11
92cb699
f13d4b2
5089920
 
 
 
 
 
 
63525c7
5089920
e0b9b11
 
63525c7
5089920
 
 
63525c7
5089920
 
63525c7
 
 
 
 
 
 
5089920
e0b9b11
5089920
50c620f
63525c7
e0b9b11
 
63525c7
e0b9b11
 
63525c7
 
5089920
e0b9b11
63525c7
92cb699
 
 
 
 
5089920
92cb699
29c2122
5089920
e0b9b11
63525c7
 
e0b9b11
200c5c4
e0b9b11
63525c7
5089920
 
92cb699
 
 
 
5089920
92cb699
 
f13d4b2
e0b9b11
63525c7
9840152
200c5c4
5089920
92cb699
9840152
92cb699
 
 
f13d4b2
63525c7
92cb699
 
 
 
e0b9b11
92cb699
9840152
b97795f
5089920
 
 
 
 
 
 
63525c7
 
5089920
63525c7
5089920
 
 
 
 
 
 
 
 
 
 
63525c7
5089920
 
 
 
 
 
63525c7
5089920
 
 
 
63525c7
5089920
 
 
 
63525c7
 
5089920
 
63525c7
5089920
 
 
63525c7
5089920
63525c7
5089920
09d5c67
92cb699
 
9d84ba9
200c5c4
5089920
92cb699
 
 
 
5089920
92cb699
5089920
63525c7
 
 
 
 
 
 
 
5089920
63525c7
92cb699
63525c7
5089920
63525c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29c2122
e0b9b11
63525c7
f13d4b2
e0b9b11
f13d4b2
9840152
 
754c854
5089920
200c5c4
63525c7
 
 
5089920
 
63525c7
 
 
 
5089920
 
 
63525c7
5089920
63525c7
 
 
 
 
5089920
 
 
63525c7
 
 
9840152
 
5089920
 
 
 
 
 
 
63525c7
5089920
 
 
 
 
 
63525c7
5089920
 
92cb699
63525c7
 
5089920
 
 
 
 
 
 
63525c7
8583908
5089920
63525c7
5089920
63525c7
 
 
 
 
 
5089920
 
 
63525c7
 
 
 
5089920
63525c7
 
5089920
63525c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5089920
63525c7
 
 
5089920
 
63525c7
 
 
 
 
5089920
63525c7
5089920
63525c7
 
 
 
 
5089920
63525c7
 
5089920
63525c7
 
 
5089920
63525c7
 
 
5089920
63525c7
5089920
63525c7
5089920
63525c7
 
5089920
 
 
 
 
 
 
 
 
63525c7
 
92cb699
63525c7
 
 
 
 
92cb699
5089920
63525c7
 
5089920
b97795f
63525c7
 
 
5089920
63525c7
 
5089920
63525c7
200c5c4
 
63525c7
5089920
 
63525c7
5089920
63525c7
92cb699
5089920
 
 
63525c7
 
 
5089920
63525c7
5089920
754c854
63525c7
 
5e4272a
5089920
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'): # Pillow 8
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'):
             print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---

from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) # Set default logging level for this module

# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient
    Voice = ImportedVoice
    VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True
    logger.info("ElevenLabs client components imported successfully.")
except Exception as e_eleven:
    logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio generation will be disabled.")

# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False
RunwayMLClient = None # Placeholder for the actual RunwayML client class
try:
    # Example: from runwayml import RunwayClient as ImportedRunwayMLClient
    # RunwayMLClient = ImportedRunwayMLClient
    # RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK import is a placeholder. Actual SDK needed for Runway features.")
except ImportError:
    logger.warning("RunwayML SDK (placeholder) not found. RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
    logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML features disabled.")


class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)

        self.font_filename = "arial.ttf"
        font_paths_to_try = [
            self.font_filename,
            f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", # Common on Linux
            f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", # Common on Linux
            f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS
            f"C:/Windows/Fonts/arial.ttf", # Windows
            f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}" # Custom container path
        ]
        self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
        self.font_size_pil = 20
        self.video_overlay_font_size = 30
        self.video_overlay_font_color = 'white'
        self.video_overlay_font = 'Liberation-Sans-Bold' # For MoviePy TextClip (ImageMagick name)

        try:
            if self.font_path_pil:
                self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
                logger.info(f"Pillow font loaded: {self.font_path_pil}.")
            else: # Fallback to default if no path found
                self.font = ImageFont.load_default()
                logger.warning("Custom Pillow font not found from paths. Using default. Text rendering might be basic.")
                self.font_size_pil = 10 # Default font is smaller
        except IOError as e_font: # Catch specific IOError for font loading
            logger.error(f"Pillow font loading IOError for '{self.font_path_pil if self.font_path_pil else 'default'}': {e_font}. Using default.")
            self.font = ImageFont.load_default()
            self.font_size_pil = 10

        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
        self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720) # Standard HD 16:9

        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
        self.elevenlabs_client = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
            self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings = None

        self.pexels_api_key = None; self.USE_PEXELS = False
        self.runway_api_key = None; self.USE_RUNWAYML = False
        self.runway_client = None

        logger.info("VisualEngine initialized.")

    def set_openai_api_key(self,k):
        self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
        logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled (no API key).'}")

    def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
        self.elevenlabs_api_key=api_key
        if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try:
                self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
                self.USE_ELEVENLABS=bool(self.elevenlabs_client)
                logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
            except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
        else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no API key or SDK issue).")

    def set_pexels_api_key(self,k):
        self.pexels_api_key=k; self.USE_PEXELS=bool(k)
        logger.info(f"Pexels Search {'Ready.' if k else 'Disabled (no API key).'}")

    def set_runway_api_key(self, k):
        self.runway_api_key = k
        if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
            try:
                # self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
                self.USE_RUNWAYML = True # Assume success for placeholder with hypothetical SDK
                logger.info(f"RunwayML Client (Placeholder with SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
            except Exception as e: logger.error(f"RunwayML client (Placeholder with SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
        elif k: # API key provided, but SDK might not be used/imported (e.g., direct HTTP)
            self.USE_RUNWAYML = True
            logger.info("RunwayML API Key set. Using direct API calls or placeholder (SDK not fully integrated/imported).")
        else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")

    def _get_text_dimensions(self,text_content,font_obj):
        if not text_content: return 0,self.font_size_pil
        try:
            if hasattr(font_obj,'getbbox'):
                bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
                return w, h if h > 0 else self.font_size_pil
            elif hasattr(font_obj,'getsize'):
                w,h=font_obj.getsize(text_content)
                return w, h if h > 0 else self.font_size_pil
            else: return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
        except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)

    def _create_placeholder_image_content(self,text_description,filename,size=None):
        # (No significant changes from your previous correct version)
        if size is None: size = self.video_frame_size
        img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
        if not text_description: text_description="(Placeholder: No prompt text)"
        words=text_description.split();current_line=""
        for word in words:
            test_line=current_line+word+" ";
            if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
            else:
                if current_line: lines.append(current_line.strip());
                current_line=word+" "
        if current_line.strip(): lines.append(current_line.strip())
        if not lines and text_description: lines.append(text_description[:int(max_w//(self.font_size_pil*0.6 +1))]+"..." if text_description else "(Text too long)")
        elif not lines: lines.append("(Placeholder Text Error)")
        _,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
        max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
        if max_lines_to_display <=0: max_lines_to_display = 1
        y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
        y_text = y_text_start
        for i in range(max_lines_to_display):
            line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
            d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
            if i==6 and max_lines_to_display > 7: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
        filepath=os.path.join(self.output_dir,filename);
        try:img.save(filepath);return filepath
        except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None

    def _search_pexels_image(self, query, output_filename_base):
        # (No significant changes from your previous correct version)
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
        pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
        filepath = os.path.join(self.output_dir, pexels_filename)
        try:
            logger.info(f"Searching Pexels for: '{query}'"); effective_query = " ".join(query.split()[:5]); params["query"] = effective_query
            response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
            response.raise_for_status(); data = response.json()
            if data.get("photos") and len(data["photos"]) > 0:
                photo_url = data["photos"][0]["src"]["large2x"]
                image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
                img_data = Image.open(io.BytesIO(image_response.content))
                if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                img_data.save(filepath); logger.info(f"Pexels image saved: {filepath}"); return filepath
            else: logger.info(f"No photos found on Pexels for query: '{effective_query}'")
        except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
        return None

    def _generate_video_clip_with_runwayml(self, prompt_text, scene_identifier_filename_base, target_duration_seconds=4, input_image_path=None):
        if not self.USE_RUNWAYML or not self.runway_api_key:
            logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
            return None
        output_video_filename = scene_identifier_filename_base.replace(".png", ".mp4") # Ensure .mp4 extension
        output_video_filepath = os.path.join(self.output_dir, output_video_filename)
        logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
        # --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL - NEEDS IMPLEMENTATION) ---
        # ... (Your actual RunwayML API call logic would go here) ...
        # --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
        logger.warning("Using PLACEHOLDER video generation for RunwayML as actual API calls are not implemented.")
        return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)

    def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
        if size is None: size = self.video_frame_size
        filepath = os.path.join(self.output_dir, filename)
        txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
                            bg_color='black', size=size, method='caption').set_duration(duration)
        try:
            txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None)
            logger.info(f"Placeholder video saved: {filepath}")
            return filepath
        except Exception as e: logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True); return None
        finally:
            if hasattr(txt_clip, 'close'): txt_clip.close()

    def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
                             generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
        base_name, _ = os.path.splitext(scene_identifier_filename_base)
        asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text, 'error_message': 'Generation not attempted'}

        if generate_as_video_clip and self.USE_RUNWAYML:
            logger.info(f"Attempting RunwayML video clip generation for {base_name}")
            video_path = self._generate_video_clip_with_runwayml(
                image_prompt_text, base_name,
                target_duration_seconds=runway_target_duration,
                input_image_path=input_image_for_runway
            )
            if video_path and os.path.exists(video_path):
                asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
                return asset_info # Successfully generated video
            else:
                logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image.")
                asset_info['error_message'] = "RunwayML video generation failed."
                # Fall through to image generation

        # Image Generation (DALL-E, Pexels, Placeholder)
        image_filename_with_ext = base_name + ".png" # Ensure .png for image
        filepath = os.path.join(self.output_dir, image_filename_with_ext)
        asset_info['type'] = 'image' # Tentatively set type to image for this path

        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_retries = 2
            for attempt in range(max_retries):
                try:
                    logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
                    client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
                    response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
                    image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
                    if revised_prompt: logger.info(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
                    image_response = requests.get(image_url, timeout=120); image_response.raise_for_status()
                    img_data = Image.open(io.BytesIO(image_response.content));
                    if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                    img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
                    asset_info = {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
                    return asset_info
                except openai.RateLimitError as e_rate: logger.warning(f"OpenAI Rate Limit: {e_rate}. Retrying..."); time.sleep(5 * (attempt + 1)); asset_info['error_message'] = str(e_rate)
                except openai.APIError as e_api: logger.error(f"OpenAI API Error: {e_api}"); asset_info['error_message'] = str(e_api); break
                except requests.exceptions.RequestException as e_req: logger.error(f"Requests Error (DALL-E download): {e_req}"); asset_info['error_message'] = str(e_req); break
                except Exception as e_gen: logger.error(f"Generic error (DALL-E gen): {e_gen}", exc_info=True); asset_info['error_message'] = str(e_gen); break
                if attempt == max_retries - 1: logger.error("Max retries for DALL-E RateLimitError."); break
            if asset_info['error']: logger.warning("DALL-E generation failed. Trying Pexels fallback...")
        
        if self.USE_PEXELS and (asset_info['error'] or not (self.USE_AI_IMAGE_GENERATION and self.openai_api_key)): # Try Pexels if DALL-E failed or disabled
            pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋…', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
            pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext)
            if pexels_path:
                asset_info = {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
                return asset_info
            asset_info['error_message'] = (asset_info.get('error_message', "") + " Pexels search also failed or disabled.").strip()
            if not asset_info['error']: logger.warning("Pexels search failed or disabled.") # If DALL-E wasn't even tried

        # Fallback to placeholder if all else fails
        if asset_info['error']: # Only create placeholder if previous steps failed
            logger.warning("All generation methods failed. Using placeholder image.")
            placeholder_prompt_text = asset_info.get('prompt_used', image_prompt_text) # Use the prompt that was attempted
            placeholder_path = self._create_placeholder_image_content(f"[Fallback Placeholder] {placeholder_prompt_text[:100]}...", image_filename_with_ext)
            if placeholder_path:
                asset_info = {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': placeholder_prompt_text}
                return asset_info
            else: # Final failure
                asset_info['error_message'] = (asset_info.get('error_message', "") + " Placeholder creation also failed.").strip()
        return asset_info # Return whatever state asset_info is in (could be error=True)

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        # (No significant changes from your previous correct version, ensure error handling is robust)
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
            logger.info("ElevenLabs conditions not met (API key, client init, or text). Skipping audio.")
            return None
        audio_filepath = os.path.join(self.output_dir, output_filename)
        try:
            logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
            audio_stream_method = None
            if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
                audio_stream_method = self.elevenlabs_client.text_to_speech.stream; logger.info("Using elevenlabs_client.text_to_speech.stream()")
            elif hasattr(self.elevenlabs_client, 'generate_stream') : audio_stream_method = self.elevenlabs_client.generate_stream; logger.info("Using elevenlabs_client.generate_stream()")
            elif hasattr(self.elevenlabs_client, 'generate'):
                logger.info("Using elevenlabs_client.generate() (non-streaming).")
                voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
                audio_bytes = self.elevenlabs_client.generate(text=text_to_narrate, voice=voice_param, model="eleven_multilingual_v2")
                with open(audio_filepath, "wb") as f: f.write(audio_bytes)
                logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}"); return audio_filepath
            else: logger.error("No recognized audio generation method found on ElevenLabs client."); return None

            if audio_stream_method:
                voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
                if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'model_dump'): # Pydantic v2 for elevenlabs sdk >=1.0
                     voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
                elif self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'dict'): # Pydantic v1 for elevenlabs sdk <1.0
                     voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict()
                elif self.elevenlabs_voice_settings : voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
                
                audio_data_iterator = audio_stream_method(text=text_to_narrate, model_id="eleven_multilingual_v2", **voice_param_for_stream)
                with open(audio_filepath, "wb") as f:
                    for chunk in audio_data_iterator:
                        if chunk: f.write(chunk)
                logger.info(f"ElevenLabs audio (streamed) saved: {audio_filepath}"); return audio_filepath
        except AttributeError as ae: logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method/params might be different.", exc_info=True)
        except Exception as e: logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
        return None

    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        if not asset_data_list:
            logger.warning("No asset data provided for animatic assembly.")
            return None

        processed_moviepy_clips = []
        narration_audio_clip = None
        final_composite_clip = None # Renamed to avoid conflict in finally block
        total_video_duration_from_assets = sum(item.get('duration', 4.5) for item in asset_data_list)
        logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}. Approx total duration: {total_video_duration_from_assets:.2f}s.")

        for i, asset_info in enumerate(asset_data_list):
            asset_path = asset_info.get('path')
            asset_type = asset_info.get('type')
            target_scene_duration = asset_info.get('duration', 4.5)
            scene_num = asset_info.get('scene_num', i + 1)
            key_action = asset_info.get('key_action', '')

            logger.info(f"Processing Scene {scene_num}: Path='{asset_path}', Type='{asset_type}', Target Duration='{target_scene_duration}'s")

            if not (asset_path and os.path.exists(asset_path)):
                logger.warning(f"Asset not found for Scene {scene_num}: {asset_path}. Skipping.")
                continue
            if target_scene_duration <= 0:
                logger.warning(f"Scene {scene_num} has invalid duration ({target_scene_duration}s). Skipping.")
                continue

            current_clip_for_scene = None
            try:
                if asset_type == 'image':
                    logger.debug(f"S{scene_num}: Loading image asset from {asset_path}")
                    pil_img = Image.open(asset_path)
                    logger.debug(f"S{scene_num}: Image loaded. Mode: {pil_img.mode}, Size: {pil_img.size}")

                    # Ensure image is RGBA for consistent pasting, then convert to RGB for MoviePy
                    if pil_img.mode != 'RGBA':
                        pil_img = pil_img.convert('RGBA') # Convert to RGBA to handle transparency uniformly

                    img_copy = pil_img.copy()
                    resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
                    img_copy.thumbnail(self.video_frame_size, resample_filter)
                    logger.debug(f"S{scene_num}: Image thumbnailed to: {img_copy.size}")

                    # Create an RGBA canvas, paste the (potentially RGBA) image onto it
                    canvas_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0)) # Fully transparent
                    xo, yo = (self.video_frame_size[0] - img_copy.width) // 2, (self.video_frame_size[1] - img_copy.height) // 2
                    canvas_rgba.paste(img_copy, (xo, yo), img_copy) # Paste using image's own alpha
                    logger.debug(f"S{scene_num}: Image pasted onto RGBA canvas.")

                    # Now create a final RGB canvas and paste the RGBA canvas onto it, effectively blending alpha
                    final_rgb_canvas = Image.new("RGB", self.video_frame_size, (random.randint(0,5), random.randint(0,5), random.randint(0,5))) # Dark background
                    final_rgb_canvas.paste(canvas_rgba, mask=canvas_rgba.split()[3]) # Use alpha channel of canvas_rgba as mask
                    
                    debug_canvas_path = os.path.join(self.output_dir, f"debug_final_rgb_canvas_scene_{scene_num}.png")
                    try: final_rgb_canvas.save(debug_canvas_path); logger.info(f"DEBUG: Saved final RGB canvas for scene {scene_num} to {debug_canvas_path}")
                    except Exception as e_save_canvas: logger.error(f"DEBUG: Failed to save final RGB canvas for scene {scene_num}: {e_save_canvas}")

                    frame_np = np.array(final_rgb_canvas)
                    logger.debug(f"S{scene_num}: Final RGB canvas to NumPy. Shape: {frame_np.shape}, Dtype: {frame_np.dtype}")
                    if frame_np.size == 0: logger.error(f"S{scene_num}: NumPy array for ImageClip is empty! Skipping."); continue
                    
                    current_clip_base = ImageClip(frame_np, transparent=False, ismask=False).set_duration(target_scene_duration)
                    logger.debug(f"S{scene_num}: Base ImageClip created.")

                    current_clip_for_scene = current_clip_base
                    try: # Ken Burns
                        end_scale = random.uniform(1.03, 1.08)
                        current_clip_for_scene = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration)).set_position('center')
                        logger.debug(f"S{scene_num}: Ken Burns effect applied.")
                    except Exception as e_fx: logger.error(f"S{scene_num}: Ken Burns error: {e_fx}. Using static.", exc_info=False); current_clip_for_scene = current_clip_base

                elif asset_type == 'video':
                    logger.debug(f"S{scene_num}: Loading video asset from {asset_path}")
                    # Ensure target_resolution is (height, width) for VideoFileClip resizing parameter
                    source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None)
                    
                    temp_clip = source_video_clip # Work with a temporary variable
                    if source_video_clip.duration > target_scene_duration:
                        temp_clip = source_video_clip.subclip(0, target_scene_duration)
                    elif source_video_clip.duration < target_scene_duration:
                        if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1:
                             temp_clip = source_video_clip.loop(duration=target_scene_duration)
                        else: # Play once, MoviePy will pad if needed during concatenation if durations differ
                             temp_clip = source_video_clip.set_duration(source_video_clip.duration) # Keep its own duration
                             logger.info(f"Video clip for S{scene_num} ({source_video_clip.duration:.2f}s) is shorter than target animatic duration ({target_scene_duration:.2f}s). It will play once at its native length.")
                    
                    # Crucially, ensure the clip used in concatenation has the target_scene_duration
                    current_clip_for_scene = temp_clip.set_duration(target_scene_duration)

                    if current_clip_for_scene.size != list(self.video_frame_size):
                        logger.debug(f"S{scene_num}: Resizing video clip from {current_clip_for_scene.size} to {self.video_frame_size}")
                        current_clip_for_scene = current_clip_for_scene.resize(self.video_frame_size)
                    
                    # Only close source_video_clip if it's different from what we are keeping (e.g., after subclip)
                    # And if it's not the same object as current_clip_for_scene
                    if source_video_clip is not current_clip_for_scene and hasattr(source_video_clip, 'close'):
                        source_video_clip.close()
                    logger.debug(f"S{scene_num}: Video asset processed. Final duration for scene: {current_clip_for_scene.duration:.2f}s")

                else: logger.warning(f"S{scene_num}: Unknown asset type '{asset_type}'. Skipping."); continue

                if current_clip_for_scene and key_action: # Add text overlay
                    logger.debug(f"S{scene_num}: Adding text overlay: '{key_action}'")
                    text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
                    text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
                    if text_overlay_duration > 0:
                        txt_clip = TextClip(f"Scene {scene_num}\n{key_action}",
                                            fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color,
                                            font=self.video_overlay_font, bg_color='rgba(10,10,20,0.7)',
                                            method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
                                            kerning=-1, stroke_color='black', stroke_width=1.5
                                           ).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
                        current_clip_for_scene = CompositeVideoClip([current_clip_for_scene, txt_clip], size=self.video_frame_size, use_bgclip=True)
                        logger.debug(f"S{scene_num}: Text overlay composited.")
                
                if current_clip_for_scene: processed_moviepy_clips.append(current_clip_for_scene); logger.info(f"S{scene_num}: Asset successfully processed and added to final list.")
            except Exception as e: logger.error(f"Error processing asset for Scene {scene_num} ({asset_path}): {e}", exc_info=True)
            finally: # Ensure individual clips are closed if they were opened and an error occurred mid-processing
                if current_clip_for_scene and asset_type == 'video' and hasattr(current_clip_for_scene, 'reader') and current_clip_for_scene.reader:
                    if hasattr(current_clip_for_scene, 'close'): current_clip_for_scene.close()


        if not processed_moviepy_clips: logger.warning("No MoviePy clips processed. Aborting animatic assembly."); return None
        
        transition_duration = 0.75
        try:
            if len(processed_moviepy_clips) > 1: final_composite_clip = concatenate_videoclips(processed_moviepy_clips, padding=-transition_duration, method="compose")
            elif processed_moviepy_clips: final_composite_clip = processed_moviepy_clips[0]
            else: logger.error("No clips for final concatenation."); return None

            if final_composite_clip.duration > transition_duration * 2: final_composite_clip = final_composite_clip.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
            elif final_composite_clip.duration > 0: final_composite_clip = final_composite_clip.fx(vfx.fadein, min(transition_duration, final_composite_clip.duration/2.0))

            if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_clip.duration > 0:
                try:
                    narration_audio_clip = AudioFileClip(overall_narration_path)
                    if narration_audio_clip.duration < final_composite_clip.duration:
                        logger.info(f"Narration ({narration_audio_clip.duration:.2f}s) shorter than visuals ({final_composite_clip.duration:.2f}s). Trimming video.")
                        final_composite_clip = final_composite_clip.subclip(0, narration_audio_clip.duration)
                    final_composite_clip = final_composite_clip.set_audio(narration_audio_clip); logger.info("Overall narration added.")
                except Exception as e: logger.error(f"Adding narration error: {e}", exc_info=True)
            elif final_composite_clip.duration <= 0 : logger.warning("Video has no duration. Audio not added.")
            
            if final_composite_clip and final_composite_clip.duration > 0:
                output_path = os.path.join(self.output_dir, output_filename)
                logger.info(f"Writing final animatic: {output_path} (Duration: {final_composite_clip.duration:.2f}s)")
                final_composite_clip.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
                                            temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
                                            remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k")
                logger.info(f"Animatic created: {output_path}"); return output_path
            else: logger.error("Final animatic clip invalid. Not writing file."); return None
        except Exception as e: logger.error(f"Animatic writing error: {e}", exc_info=True); return None
        finally:
            for clip_obj in processed_moviepy_clips:
                if hasattr(clip_obj, 'close'): clip_obj.close()
            if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
            if final_composite_clip and hasattr(final_composite_clip, 'close'): final_composite_clip.close()