File size: 38,286 Bytes
287c9ca e0b9b11 cb93f9c 92cb699 cb93f9c 5089920 cb93f9c 5089920 cb93f9c 92cb699 5089920 9840152 5089920 990e23e 92cb699 5089920 92cb699 cb93f9c 200c5c4 59af6e7 f13d4b2 cb93f9c 59af6e7 f13d4b2 5089920 f13d4b2 59af6e7 5089920 cb93f9c 5089920 cb93f9c 4c2220b f13d4b2 287c9ca 92cb699 e0b9b11 cb93f9c 5089920 cb93f9c e0b9b11 59af6e7 cb93f9c 59af6e7 5089920 cb93f9c f02ab98 cb93f9c 59af6e7 cb93f9c 200c5c4 09d5c67 59af6e7 92cb699 f13d4b2 5089920 cb93f9c 59af6e7 5089920 cb93f9c 59af6e7 cb93f9c 5089920 cb93f9c 59af6e7 cb93f9c 59af6e7 cb93f9c 59af6e7 cb93f9c 59af6e7 cb93f9c 5089920 59af6e7 cb93f9c 5089920 59af6e7 5089920 cb93f9c 5089920 cb93f9c 59af6e7 cb93f9c 09d5c67 59af6e7 9d84ba9 cb93f9c 59af6e7 cb93f9c 59af6e7 cb93f9c 59af6e7 cb93f9c 59af6e7 cb93f9c 3313da9 cb93f9c 3313da9 29c2122 cb93f9c e0b9b11 cb93f9c 5089920 cb93f9c 5089920 cb93f9c 63525c7 cb93f9c 5089920 cb93f9c 8583908 5089920 cb93f9c 5089920 cb93f9c 3313da9 cb93f9c 59af6e7 cb93f9c 3313da9 cb93f9c 59af6e7 cb93f9c b97795f cb93f9c 754c854 3313da9 cb93f9c 3313da9 cb93f9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64 # For Data URI conversion
# --- MONKEY PATCH ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'): print("WARNING: Pillow ANTIALIAS/Resampling issue.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS patch error: {e_mp}")
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
import mimetypes # For Data URI
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- SERVICE CLIENT IMPORTS ---
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_eleven: logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClient = None # Renamed for clarity
try:
from runwayml import RunwayML as ImportedRunwayMLClient # Actual SDK import
RunwayMLAPIClient = ImportedRunwayMLClient
RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK imported successfully.")
except ImportError:
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk}. RunwayML features disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "DejaVuSans-Bold.ttf"
font_paths_to_try = [ self.font_filename, "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", "/System/Library/Fonts/Supplemental/Arial.ttf", "C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20; self.video_overlay_font_size = 30; self.video_overlay_font_color = 'white'
self.video_overlay_font = 'DejaVu-Sans-Bold'
try:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
if self.font_path_pil: logger.info(f"Pillow font: {self.font_path_pil}.")
else: logger.warning("Default Pillow font."); self.font_size_pil = 10
except IOError as e_font: logger.error(f"Pillow font IOError: {e_font}. Default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720) # Default, will be mapped to Runway ratio
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None; self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_client = None
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient: # Initialize if SDK is available
try:
# The SDK expects RUNWAYML_API_SECRET env var.
# If your key is passed directly, you might need to initialize differently or set the env var.
if os.getenv("RUNWAYML_API_SECRET"):
self.runway_client = RunwayMLAPIClient()
logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var.")
else:
logger.warning("RUNWAYML_API_SECRET env var not set. RunwayML client not initialized here (will try in set_runway_api_key).")
except Exception as e_runway_init:
logger.error(f"Failed to initialize RunwayML client during __init__: {e_runway_init}", exc_info=True)
logger.info("VisualEngine initialized.")
def set_openai_api_key(self,k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
self.elevenlabs_api_key=api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: # This API key is for the client
try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS=bool(self.elevenlabs_client); logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK issue).")
def set_pexels_api_key(self,k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k): # For RunwayML
self.runway_api_key = k # Store the key
if k:
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
if not self.runway_client: # If not initialized in __init__
try:
# Ensure RUNWAYML_API_SECRET is set if SDK relies on it
if not os.getenv("RUNWAYML_API_SECRET") and k:
logger.info("Setting RUNWAYML_API_SECRET environment variable from provided key for SDK.")
os.environ["RUNWAYML_API_SECRET"] = k # Make key available to SDK
self.runway_client = RunwayMLAPIClient()
self.USE_RUNWAYML = True
logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
except Exception as e_client_init:
logger.error(f"RunwayML Client initialization failed in set_runway_api_key: {e_client_init}", exc_info=True)
self.USE_RUNWAYML = False
else: # Client was already initialized (e.g., from env var in __init__)
self.USE_RUNWAYML = True
logger.info("RunwayML Client already initialized.")
else: # SDK not imported
logger.warning("RunwayML SDK not imported. API key set, but direct HTTP calls would be needed (not implemented).")
self.USE_RUNWAYML = False # Can't use if SDK is the only implemented path
else:
self.USE_RUNWAYML = False
logger.info("RunwayML Disabled (no API key provided to set_runway_api_key).")
def _image_to_data_uri(self, image_path):
try:
mime_type, _ = mimetypes.guess_type(image_path)
if not mime_type:
# Fallback for common image types if mimetypes fails (e.g., on some systems)
ext = os.path.splitext(image_path)[1].lower()
if ext == ".png": mime_type = "image/png"
elif ext in [".jpg", ".jpeg"]: mime_type = "image/jpeg"
else:
logger.warning(f"Could not determine MIME type for {image_path}. Defaulting to application/octet-stream.")
mime_type = "application/octet-stream" # Fallback, Runway might reject this
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
data_uri = f"data:{mime_type};base64,{encoded_string}"
logger.debug(f"Generated data URI for {image_path} (first 100 chars): {data_uri[:100]}")
return data_uri
except Exception as e:
logger.error(f"Error converting image {image_path} to data URI: {e}", exc_info=True)
return None
def _map_resolution_to_runway_ratio(self, width, height):
# Gen-4 supports specific ratios. Find the closest supported or default.
# Example: 1280x720 -> "1280:720"
# This needs to be robust. For now, we'll assume app.py sends a valid W:H string
# or we use a default that matches self.video_frame_size if it's standard.
if width == 1280 and height == 720: return "1280:720"
if width == 720 and height == 1280: return "720:1280"
# Add more mappings based on Gen-4 supported ratios if your self.video_frame_size can vary
logger.warning(f"Unsupported resolution {width}x{height} for Runway Gen-4 mapping. Defaulting to 1280:720.")
return "1280:720" # Default
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
if not self.USE_RUNWAYML or not self.runway_client: # Check for initialized client
logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.")
return None
if not input_image_path or not os.path.exists(input_image_path):
logger.error(f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}")
return None
image_data_uri = self._image_to_data_uri(input_image_path)
if not image_data_uri:
return None
runway_duration = 10 if target_duration_seconds > 7 else 5 # Map to 5s or 10s
runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
output_video_filename = scene_identifier_filename_base.replace(".png", f"_runway_gen4_d{runway_duration}s.mp4")
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
try:
task = self.runway_client.image_to_video.create(
model='gen4_turbo',
prompt_image=image_data_uri,
prompt_text=text_prompt_for_motion,
duration=runway_duration,
ratio=runway_ratio_str, # e.g., "1280:720"
# seed=random.randint(0, 4294967295), # Optional
# Other Gen-4 params can be added here: motion_score, upscale etc.
)
logger.info(f"Runway Gen-4 task created with ID: {task.id}. Polling for completion...")
poll_interval = 10 # seconds
max_polls = 36 # Max 6 minutes (36 * 10s)
for _ in range(max_polls):
time.sleep(poll_interval)
task_details = self.runway_client.tasks.retrieve(id=task.id)
logger.info(f"Runway task {task.id} status: {task_details.status}")
if task_details.status == 'SUCCEEDED':
# The SDK docs don't explicitly show how to get the output URL from `task_details`.
# Common patterns are `task_details.output.url` or `task_details.artifacts[0].url`.
# This is a GUESS based on typical API structures. You MUST verify this.
output_url = None
if hasattr(task_details, 'output') and task_details.output and hasattr(task_details.output, 'url'):
output_url = task_details.output.url
elif hasattr(task_details, 'artifacts') and task_details.artifacts and isinstance(task_details.artifacts, list) and len(task_details.artifacts) > 0:
# Assuming the first artifact is the video and has a URL
if hasattr(task_details.artifacts[0], 'url'):
output_url = task_details.artifacts[0].url
elif hasattr(task_details.artifacts[0], 'download_url'): # Another common name
output_url = task_details.artifacts[0].download_url
if not output_url:
logger.error(f"Runway task {task.id} SUCCEEDED, but no output URL found in task details: {task_details}")
# Attempt to log the full task_details object for inspection
try: logger.error(f"Full task details: {vars(task_details)}")
except: pass
return None
logger.info(f"Runway task {task.id} SUCCEEDED. Downloading video from: {output_url}")
video_response = requests.get(output_url, stream=True, timeout=300) # 5 min timeout for download
video_response.raise_for_status()
with open(output_video_filepath, 'wb') as f:
for chunk in video_response.iter_content(chunk_size=8192):
f.write(chunk)
logger.info(f"Runway Gen-4 video successfully downloaded and saved to: {output_video_filepath}")
return output_video_filepath
elif task_details.status in ['FAILED', 'ABORTED']:
error_message = "Unknown error"
if hasattr(task_details, 'error_message') and task_details.error_message:
error_message = task_details.error_message
elif hasattr(task_details, 'output') and hasattr(task_details.output, 'error') and task_details.output.error:
error_message = task_details.output.error
logger.error(f"Runway task {task.id} status: {task_details.status}. Error: {error_message}")
return None
logger.warning(f"Runway task {task.id} timed out after {max_polls * poll_interval} seconds.")
return None
except AttributeError as ae: # If SDK methods are not as expected
logger.error(f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods match.", exc_info=True)
return None
except Exception as e_runway:
logger.error(f"Error during Runway Gen-4 API call or processing: {e_runway}", exc_info=True)
return None
# --- Other helper methods (_get_text_dimensions, _create_placeholder_image_content, _search_pexels_image, _create_placeholder_video_content) ---
# --- Keep these as they were in the previous full rewrite unless they need minor adjustments for the Gen-4 workflow ---
def _get_text_dimensions(self,tc,fo): di=fo.size if hasattr(fo,'size') else self.font_size_pil; return (0,di) if not tc else (lambda b:(b[2]-b[0],b[3]-b[1] if b[3]-b[1]>0 else di))(fo.getbbox(tc)) if hasattr(fo,'getbbox') else (lambda s:(s[0],s[1] if s[1]>0 else di))(fo.getsize(tc)) if hasattr(fo,'getsize') else (int(len(tc)*di*0.6),int(di*1.2))
def _create_placeholder_image_content(self,td,fn,sz=None):
if sz is None: sz = self.video_frame_size; img=Image.new('RGB',sz,color=(20,20,40));d=ImageDraw.Draw(img);pd=25;mw=sz[0]-(2*pd);ls=[];
if not td: td="(Placeholder Image)"
ws=td.split();cl=""
for w in ws: tl=cl+w+" ";raw_w,_=self._get_text_dimensions(tl,self.font);check_w=raw_w if raw_w > 0 else len(tl)*(self.font_size_pil*0.6); # Corrected w to check_w
if check_w<=mw:cl=tl;else: # Corrected w to check_w
if cl:ls.append(cl.strip());cl=w+" "
if cl.strip():ls.append(cl.strip())
if not ls and td:ls.append(td[:int(mw//(self._get_text_dimensions("A",self.font)[0]or 10))]+"..." if td else "(Text too long)");elif not ls:ls.append("(Placeholder Error)")
_,slh=self._get_text_dimensions("Ay",self.font);slh=slh if slh>0 else self.font_size_pil+2;mld=min(len(ls),(sz[1]-(2*pd))//(slh+2)) if slh>0 else 1;
if mld<=0:mld=1;yts=pd+(sz[1]-(2*pd)-mld*(slh+2))/2.0;yt=yts
for i in range(mld):lc=ls[i];lw,_=self._get_text_dimensions(lc,self.font);xt=(sz[0]-lw)/2.0;d.text((xt,yt),lc,font=self.font,fill=(200,200,180));yt+=slh+2
if i==6 and mld>7:d.text((xt,yt),"...",font=self.font,fill=(200,200,180));break
fp=os.path.join(self.output_dir,fn);
try:img.save(fp);return fp
except Exception as e:logger.error(f"Save placeholder img {fp}: {e}",exc_info=True);return None
def _search_pexels_image(self, q, ofnb):
if not self.USE_PEXELS or not self.pexels_api_key: return None; h={"Authorization":self.pexels_api_key};p={"query":q,"per_page":1,"orientation":"landscape","size":"large2x"}
pfn=ofnb.replace(".png",f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4",f"_pexels_{random.randint(1000,9999)}.jpg");fp=os.path.join(self.output_dir,pfn)
try: logger.info(f"Pexels search: '{q}'");eq=" ".join(q.split()[:5]);p["query"]=eq;r=requests.get("https://api.pexels.com/v1/search",headers=h,params=p,timeout=20)
r.raise_for_status();d=r.json()
if d.get("photos") and len(d["photos"])>0:pu=d["photos"][0]["src"]["large2x"];ir=requests.get(pu,timeout=60);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content)) # Renamed id to id_img
if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(fp);logger.info(f"Pexels saved: {fp}");return fp
else: logger.info(f"No Pexels for: '{eq}'")
except Exception as e:logger.error(f"Pexels error ('{q}'): {e}",exc_info=True);return None
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None): # Generic placeholder
if sz is None: sz = self.video_frame_size; fp = os.path.join(self.output_dir, fn); tc = None
try:
tc = TextClip(td, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=sz, method='caption').set_duration(dur)
tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Generic placeholder video: {fp}"); return fp
except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
finally:
if tc and hasattr(tc, 'close'): tc.close()
# --- generate_scene_asset (Main asset generation logic) ---
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=5):
base_name, _ = os.path.splitext(scene_identifier_filename_base)
# Default asset_info for error state
asset_info = {'path': None, 'type': 'none', 'error': True,
'prompt_used': image_generation_prompt_text, # Default to image prompt
'error_message': 'Asset generation not fully attempted'}
# STEP 1: Generate/acquire the base image for Runway Gen-4 or for direct image output
input_image_for_runway_path = None
# Use a distinct name for the base image if it's only an intermediate step for video
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
base_image_filepath = os.path.join(self.output_dir, base_image_filename)
# Try DALL-E for base image
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_r, att_n = 2, 0
for att_n in range(max_r):
try:
logger.info(f"Attempt {att_n+1} DALL-E (base image): {image_generation_prompt_text[:100]}...")
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
r = cl.images.generate(model=self.dalle_model, prompt=image_generation_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
iu = r.data[0].url; rp = getattr(r.data[0], 'revised_prompt', None)
if rp: logger.info(f"DALL-E revised: {rp[:100]}...")
ir = requests.get(iu, timeout=120); ir.raise_for_status()
id_img = Image.open(io.BytesIO(ir.content))
if id_img.mode != 'RGB': id_img = id_img.convert('RGB')
id_img.save(base_image_filepath); logger.info(f"DALL-E base image saved: {base_image_filepath}");
input_image_for_runway_path = base_image_filepath
asset_info = {'path': base_image_filepath, 'type': 'image', 'error': False, 'prompt_used': image_generation_prompt_text, 'revised_prompt': rp}
break # DALL-E success
except openai.RateLimitError as e: logger.warning(f"OpenAI Rate Limit {att_n+1}: {e}. Retry..."); time.sleep(5*(att_n+1)); asset_info['error_message']=str(e)
except Exception as e: logger.error(f"DALL-E base image error: {e}", exc_info=True); asset_info['error_message']=str(e); break
if asset_info['error']: logger.warning(f"DALL-E failed after {att_n+1} attempts for base image.")
# Try Pexels if DALL-E failed or not used
if asset_info['error'] and self.USE_PEXELS:
logger.info("Attempting Pexels for base image.")
pqt = scene_data.get('pexels_search_query_๊ฐ๋
', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pp = self._search_pexels_image(pqt, base_image_filename) # Pass base image filename
if pp: input_image_for_runway_path = pp; asset_info = {'path': pp, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pqt}"}
else: current_em = asset_info.get('error_message',""); asset_info['error_message']=(current_em + " Pexels failed for base image.").strip()
# Fallback to placeholder for base image if all above failed
if asset_info['error']:
logger.warning("Base image (DALL-E/Pexels) failed. Using placeholder for base image.")
ppt = asset_info.get('prompt_used', image_generation_prompt_text) # Use the original image prompt
php = self._create_placeholder_image_content(f"[Base Img Placeholder] {ppt[:100]}...", base_image_filename)
if php: input_image_for_runway_path = php; asset_info = {'path': php, 'type': 'image', 'error': False, 'prompt_used': ppt}
else: current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em + " Base placeholder failed.").strip()
# STEP 2: If video clip is requested, use the generated base image with RunwayML
if generate_as_video_clip:
if not input_image_for_runway_path: # If base image generation totally failed
logger.error("Cannot generate RunwayML video: base image path is missing or generation failed.")
asset_info['error'] = True # Ensure error state is propagated
asset_info['error_message'] = (asset_info.get('error_message',"") + " Base image missing, Runway video aborted.").strip()
asset_info['type'] = 'none' # No valid asset produced
return asset_info
if self.USE_RUNWAYML:
logger.info(f"Proceeding to Runway Gen-4 video for {base_name} using base image: {input_image_for_runway_path}")
video_path = self._generate_video_clip_with_runwayml(
text_prompt_for_motion=motion_prompt_text_for_video,
input_image_path=input_image_for_runway_path,
scene_identifier_filename_base=base_name, # _runway_gen4.mp4 will be appended
target_duration_seconds=runway_target_duration
)
if video_path and os.path.exists(video_path):
# Success generating video
asset_info = {'path': video_path, 'type': 'video', 'error': False,
'prompt_used': motion_prompt_text_for_video, # This is the prompt for Runway
'base_image_path': input_image_for_runway_path}
else:
# RunwayML failed, return the base image info but mark video as failed
logger.warning(f"RunwayML video generation failed for {base_name}. Using the base image as fallback.")
asset_info['error'] = True # Video step specifically failed
asset_info['error_message'] = (asset_info.get('error_message', "Base image generated.") + " RunwayML video step failed; using base image instead.").strip()
asset_info['path'] = input_image_for_runway_path # Path of the base image
asset_info['type'] = 'image' # Fallback asset type is image
asset_info['prompt_used'] = image_generation_prompt_text # Prompt for the base image
else: # RunwayML not enabled, use base image
logger.warning("RunwayML selected but not enabled/configured. Using base image.")
asset_info['error'] = True # Mark that video wasn't generated
asset_info['error_message'] = (asset_info.get('error_message', "Base image generated.") + " RunwayML disabled; using base image.").strip()
asset_info['path'] = input_image_for_runway_path
asset_info['type'] = 'image'
asset_info['prompt_used'] = image_generation_prompt_text
# If not generate_as_video_clip, asset_info already holds the result of image generation
return asset_info
# --- generate_narration_audio (Keep as before) ---
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
else:logger.error("No 11L audio method.");return None
if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
else:vps["voice_settings"]=self.elevenlabs_voice_settings
adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
with open(afp,"wb")as f:
for c in adi:
if c:f.write(c)
logger.info(f"11L audio (stream): {afp}");return afp
except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None
# --- assemble_animatic_from_assets (Keep robust image processing, C-contiguous, debug saves, pix_fmt) ---
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list: logger.warning("No assets for animatic."); return None
processed_clips = []; narration_clip = None; final_clip = None # final_composite_clip_obj renamed to final_clip
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue
current_scene_mvpy_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
cv_rgba.paste(thumb,(xo,yo),thumb)
final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
frame_np = np.array(final_rgb_pil,dtype=np.uint8);
if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
clip_fx = clip_base
try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
current_scene_mvpy_clip = clip_fx
elif asset_type == 'video':
src_clip=None
try:
src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False) # Explicitly no audio from source video clips
tmp_clip=src_clip
if src_clip.duration!=scene_dur:
if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
else:
if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur)
if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
finally:
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
if current_scene_mvpy_clip and key_action:
try:
to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
to_start=0.25
if to_dur > 0 : # Only add text if duration is positive
txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
else: logger.warning(f"S{scene_num}: Text overlay duration is zero or negative. Skipping text overlay.")
except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'): # Check if it's a VideoFileClip instance that needs closing
if hasattr(current_scene_mvpy_clip, 'reader') and current_scene_mvpy_clip.reader: current_scene_mvpy_clip.close()
elif not hasattr(current_scene_mvpy_clip, 'reader'): current_scene_mvpy_clip.close() # For ImageClip if close() is added
if not processed_clips:logger.warning("No clips processed. Abort.");return None
td=0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.");
if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
elif processed_clips:final_clip=processed_clips[0]
if not final_clip:logger.error("Concatenation failed.");return None
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
if td>0 and final_clip.duration>0:
if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
if final_clip and final_clip.duration>0:
op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
logger.info(f"Video created:{op}");return op
else:logger.error("Final clip invalid. No write.");return None
except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
for clip_obj in all_clips_to_close: # Use a different name to avoid scope issues
if clip_obj and hasattr(clip_obj, 'close'):
try: clip_obj.close()
except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_obj).__name__} - {e_close}") |