File size: 49,424 Bytes
e22eb13
e0b9b11
b1b7840
 
990e23e
92cb699
 
 
 
 
5089920
92cb699
200c5c4
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22eb13
b1b7840
 
e22eb13
b1b7840
 
 
 
 
f13d4b2
5089920
f13d4b2
5089920
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5089920
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
4c2220b
f13d4b2
287c9ca
b1b7840
 
 
 
 
 
 
 
 
 
 
e0b9b11
 
b1b7840
 
55ef0ff
b1b7840
 
 
 
 
 
55ef0ff
b1b7840
 
 
55ef0ff
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ef0ff
b1b7840
 
 
 
d44d308
b1b7840
 
 
 
55ef0ff
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200c5c4
09d5c67
b1b7840
 
 
 
 
 
 
 
 
 
 
 
d44d308
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ef0ff
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ef0ff
 
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ef0ff
b1b7840
 
 
 
 
 
55ef0ff
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ef0ff
4da81e5
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5089920
b1b7840
 
e22eb13
b1b7840
 
 
 
 
 
 
 
 
 
 
5089920
b1b7840
 
 
 
 
 
 
cb93f9c
b1b7840
 
 
610a011
b1b7840
4da81e5
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da81e5
b1b7840
 
 
 
 
610a011
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
610a011
 
b1b7840
 
 
 
 
610a011
 
b1b7840
 
 
 
 
 
610a011
 
8583908
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610a011
b1b7840
 
 
 
 
 
 
610a011
 
b1b7840
 
3313da9
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
59af6e7
b1b7840
 
 
 
 
 
610a011
59af6e7
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
b1b7840
 
 
 
 
 
 
 
 
a219e07
b1b7840
b97795f
b1b7840
 
 
 
 
 
 
 
 
610a011
b1b7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754c854
3313da9
b1b7840
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging

# --- MoviePy Imports ---
from moviepy.editor import (
    ImageClip,
    VideoFileClip,
    concatenate_videoclips,
    TextClip,
    CompositeVideoClip,
    AudioFileClip,
)
import moviepy.video.fx.all as vfx

# --- MONKEY PATCH for Pillow/MoviePy compatibility ---
try:
    if hasattr(Image, "Resampling") and hasattr(Image.Resampling, "LANCZOS"):  # Pillow 9+
        if not hasattr(Image, "ANTIALIAS"):
            Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, "LANCZOS"):  # Pillow 8
        if not hasattr(Image, "ANTIALIAS"):
            Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, "ANTIALIAS"):  # Fallback if no common resampling attributes found
        print(
            "WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different."
        )
except Exception as e_monkey_patch:
    print(
        f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}"
    )

logger = logging.getLogger(__name__)
# Consider setting level in main app if not already configured:
# logger.setLevel(logging.DEBUG) # For very verbose output during debugging

# --- External Service Client Imports ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings

    ElevenLabsAPIClient = ImportedElevenLabsClient
    Voice = ImportedVoice
    VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True
    logger.info("ElevenLabs client components imported successfully.")
except ImportError:
    logger.warning(
        "ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled."
    )
except Exception as e_eleven_import:
    logger.warning(
        f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled."
    )

RUNWAYML_SDK_IMPORTED = False
RunwayMLAPIClient = None  # Using a more specific name for the client class
try:
    from runwayml import RunwayML as ImportedRunwayMLClient  # Actual SDK import

    RunwayMLAPIClient = ImportedRunwayMLClient
    RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK imported successfully.")
except ImportError:
    logger.warning(
        "RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled."
    )
except Exception as e_runway_sdk_import:
    logger.warning(
        f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled."
    )


class VisualEngine:
    DEFAULT_FONT_SIZE_PIL = 10  # For default Pillow font
    PREFERRED_FONT_SIZE_PIL = 20  # For custom font
    VIDEO_OVERLAY_FONT_SIZE = 30
    VIDEO_OVERLAY_FONT_COLOR = "white"
    # Standard font names ImageMagick (used by TextClip) is likely to find in Linux containers
    DEFAULT_MOVIEPY_FONT = "DejaVu-Sans-Bold"
    PREFERRED_MOVIEPY_FONT = "Liberation-Sans-Bold"  # Often available

    def __init__(
        self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"
    ):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)

        self.font_filename_pil = "DejaVuSans-Bold.ttf"  # A more standard Linux font
        font_paths_to_try = [
            self.font_filename_pil,  # If in working dir or PATH
            f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}",
            f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",  # Alternative
            f"/System/Library/Fonts/Supplemental/Arial.ttf",  # macOS fallback
            f"C:/Windows/Fonts/arial.ttf",  # Windows fallback
            f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf",  # User's previous custom path
        ]
        self.font_path_pil_resolved = next(
            (p for p in font_paths_to_try if os.path.exists(p)), None
        )

        self.font_pil = ImageFont.load_default()  # Default
        self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL

        if self.font_path_pil_resolved:
            try:
                self.font_pil = ImageFont.truetype(
                    self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL
                )
                self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL
                logger.info(
                    f"Pillow font loaded: {self.font_path_pil_resolved} at size {self.current_font_size_pil}."
                )
                # Determine MoviePy font based on loaded PIL font
                if "dejavu" in self.font_path_pil_resolved.lower():
                    self.video_overlay_font = "DejaVu-Sans-Bold"
                elif "liberation" in self.font_path_pil_resolved.lower():
                    self.video_overlay_font = "Liberation-Sans-Bold"
                else:  # Fallback if custom font doesn't have an obvious ImageMagick name
                    self.video_overlay_font = self.DEFAULT_MOVIEPY_FONT
            except IOError as e_font_load:
                logger.error(
                    f"Pillow font loading IOError for '{self.font_path_pil_resolved}': {e_font_load}. Using default."
                )
        else:
            logger.warning("Custom Pillow font not found. Using default.")

        self.openai_api_key = None
        self.USE_AI_IMAGE_GENERATION = False
        self.dalle_model = "dall-e-3"
        self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)

        self.elevenlabs_api_key = None
        self.USE_ELEVENLABS = False
        self.elevenlabs_client = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
            self.elevenlabs_voice_settings = VoiceSettings(
                stability=0.60,
                similarity_boost=0.80,
                style=0.15,
                use_speaker_boost=True,
            )
        else:
            self.elevenlabs_voice_settings = None

        self.pexels_api_key = None
        self.USE_PEXELS = False
        self.runway_api_key = None
        self.USE_RUNWAYML = False
        self.runway_ml_client_instance = None  # More specific name

        # Attempt to initialize Runway client if SDK is present and env var might be set
        if (
            RUNWAYML_SDK_IMPORTED
            and RunwayMLAPIClient
            and os.getenv("RUNWAYML_API_SECRET")
        ):
            try:
                self.runway_ml_client_instance = RunwayMLAPIClient()  # SDK uses env var
                self.USE_RUNWAYML = True  # Assume enabled if client initializes
                logger.info(
                    "RunwayML Client initialized from RUNWAYML_API_SECRET env var at startup."
                )
            except Exception as e_runway_init_startup:
                logger.error(
                    f"Initial RunwayML client init failed (env var RUNWAYML_API_SECRET might be invalid): {e_runway_init_startup}"
                )
                self.USE_RUNWAYML = False

        logger.info("VisualEngine initialized.")

    # --- API Key Setters ---
    def set_openai_api_key(self, api_key):
        self.openai_api_key = api_key
        self.USE_AI_IMAGE_GENERATION = bool(api_key)
        logger.info(
            f"DALL-E ({self.dalle_model}) status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}"
        )

    def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
        self.elevenlabs_api_key = api_key
        if voice_id_from_secret:
            self.elevenlabs_voice_id = voice_id_from_secret
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try:
                self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
                self.USE_ELEVENLABS = bool(self.elevenlabs_client)
                logger.info(
                    f"ElevenLabs Client status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})"
                )
            except Exception as e:
                logger.error(
                    f"ElevenLabs client initialization error: {e}. Service Disabled.",
                    exc_info=True,
                )
                self.USE_ELEVENLABS = False
                self.elevenlabs_client = None
        else:
            self.USE_ELEVENLABS = False
            logger.info(
                f"ElevenLabs Service Disabled (API key not provided or SDK import issue)."
            )

    def set_pexels_api_key(self, api_key):
        self.pexels_api_key = api_key
        self.USE_PEXELS = bool(api_key)
        logger.info(
            f"Pexels Search status: {'Ready' if self.USE_PEXELS else 'Disabled'}"
        )

    def set_runway_api_key(self, api_key):
        self.runway_api_key = api_key  # Store key regardless for potential direct HTTP use
        if api_key:
            if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
                if not self.runway_ml_client_instance:  # If not already initialized by env var
                    try:
                        # The RunwayML Python SDK expects the API key via the RUNWAYML_API_SECRET env var.
                        # If it's not set, we set it temporarily for client initialization.
                        original_env_secret = os.getenv("RUNWAYML_API_SECRET")
                        if not original_env_secret:
                            logger.info(
                                "Temporarily setting RUNWAYML_API_SECRET from provided key for SDK client init."
                            )
                            os.environ["RUNWAYML_API_SECRET"] = api_key

                        self.runway_ml_client_instance = RunwayMLAPIClient()
                        self.USE_RUNWAYML = True  # SDK client successfully initialized
                        logger.info(
                            "RunwayML Client initialized successfully using provided API key."
                        )

                        if not original_env_secret:  # Clean up if we set it
                            del os.environ["RUNWAYML_API_SECRET"]
                            logger.info(
                                "Cleared temporary RUNWAYML_API_SECRET env var."
                            )

                    except Exception as e_client_init:
                        logger.error(
                            f"RunwayML Client initialization via set_runway_api_key failed: {e_client_init}",
                            exc_info=True,
                        )
                        self.USE_RUNWAYML = False
                        self.runway_ml_client_instance = None
                else:  # Client was already initialized (likely via env var during __init__)
                    self.USE_RUNWAYML = True
                    logger.info(
                        "RunwayML Client was already initialized (likely from env var). API key stored."
                    )
            else:  # SDK not imported
                logger.warning(
                    "RunwayML SDK not imported. API key stored, but integration requires SDK. Service effectively disabled."
                )
                self.USE_RUNWAYML = False
        else:  # No API key provided
            self.USE_RUNWAYML = False
            self.runway_ml_client_instance = None
            logger.info("RunwayML Service Disabled (no API key provided).")

    # --- Helper Methods ---
    def _image_to_data_uri(self, image_path):
        try:
            mime_type, _ = mimetypes.guess_type(image_path)
            if not mime_type:
                ext = os.path.splitext(image_path)[1].lower()
                mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg"}
                mime_type = mime_map.get(ext, "application/octet-stream")
                if mime_type == "application/octet-stream":
                    logger.warning(
                        f"Could not determine MIME type for {image_path}, using default."
                    )

            with open(image_path, "rb") as image_file:
                encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
            data_uri = f"data:{mime_type};base64,{encoded_string}"
            logger.debug(
                f"Generated data URI for {os.path.basename(image_path)} (first 100 chars): {data_uri[:100]}..."
            )
            return data_uri
        except FileNotFoundError:
            logger.error(f"Image file not found at {image_path} for data URI conversion.")
            return None
        except Exception as e:
            logger.error(
                f"Error converting image {image_path} to data URI: {e}", exc_info=True
            )
            return None

    def _map_resolution_to_runway_ratio(self, width, height):
        ratio_str = f"{width}:{height}"
        # Gen-4 supports: "1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"
        supported_ratios_gen4 = [
            "1280:720",
            "720:1280",
            "1104:832",
            "832:1104",
            "960:960",
            "1584:672",
        ]
        if ratio_str in supported_ratios_gen4:
            return ratio_str
        # Fallback or find closest - for now, strict matching or default
        logger.warning(
            f"Resolution {ratio_str} not directly in Gen-4 supported list. Defaulting to 1280:720."
        )
        return "1280:720"

    def _get_text_dimensions(self, text_content, font_object):
        # (Robust version from before)
        default_char_height = getattr(font_object, "size", self.current_font_size_pil)
        if not text_content:
            return 0, default_char_height
        try:
            if hasattr(font_object, "getbbox"):
                bbox = font_object.getbbox(text_content)
                w = bbox[2] - bbox[0]
                h = bbox[3] - bbox[1]
                return w, h if h > 0 else default_char_height
            elif hasattr(font_object, "getsize"):
                w, h = font_object.getsize(text_content)
                return w, h if h > 0 else default_char_height
            else:
                return (
                    int(len(text_content) * default_char_height * 0.6),
                    int(default_char_height * 1.2),
                )
        except Exception as e:
            logger.warning(f"Error in _get_text_dimensions: {e}")
            return (
                int(len(text_content) * self.current_font_size_pil * 0.6),
                int(self.current_font_size_pil * 1.2),
            )

    def _create_placeholder_image_content(self, text_description, filename, size=None):
        # (Corrected version from previous response)
        if size is None:
            size = self.video_frame_size
        img = Image.new("RGB", size, color=(20, 20, 40))
        d = ImageDraw.Draw(img)
        padding = 25
        max_w = size[0] - (2 * padding)
        lines = []
        if not text_description:
            text_description = "(Placeholder Image)"
        words = text_description.split()
        current_line_text = ""
        for word_idx, word in enumerate(words):
            prospective_addition = word + (" " if word_idx < len(words) - 1 else "")
            test_line_text = current_line_text + prospective_addition
            current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil)
            if current_w == 0 and test_line_text.strip():
                current_w = len(test_line_text) * (self.current_font_size_pil * 0.6)  # Estimate

            if current_w <= max_w:
                current_line_text = test_line_text
            else:
                if current_line_text.strip():
                    lines.append(current_line_text.strip())
                current_line_text = prospective_addition  # Start new line
        if current_line_text.strip():
            lines.append(current_line_text.strip())

        if not lines and text_description:
            avg_char_w, _ = self._get_text_dimensions("W", self.font_pil)
            avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6)
            chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20
            lines.append(
                text_description[:chars_per_line]
                + ("..." if len(text_description) > chars_per_line else "")
            )
        elif not lines:
            lines.append("(Placeholder Error)")

        _, single_line_h = self._get_text_dimensions("Ay", self.font_pil)
        single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2
        max_lines = (
            min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2))
            if single_line_h > 0
            else 1
        )
        max_lines = max(1, max_lines)  # Ensure at least one line

        y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0
        for i in range(max_lines):
            line_text = lines[i]
            line_w, _ = self._get_text_dimensions(line_text, self.font_pil)
            if line_w == 0 and line_text.strip():
                line_w = len(line_text) * (self.current_font_size_pil * 0.6)
            x_pos = (size[0] - line_w) / 2.0
            try:
                d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180))
            except Exception as e_draw:
                logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'")
            y_pos += single_line_h + 2
            if i == 6 and max_lines > 7:
                try:
                    d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180))
                except Exception as e_elip:
                    logger.error(f"Pillow d.text ellipsis error: {e_elip}")
                    break

        filepath = os.path.join(self.output_dir, filename)
        try:
            img.save(filepath)
            return filepath
        except Exception as e_save:
            logger.error(
                f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True
            )
            return None

    def _search_pexels_image(self, query, output_filename_base):
        # <<< THIS IS THE CORRECTED METHOD >>>
        if not self.USE_PEXELS or not self.pexels_api_key:
            return None
        headers = {"Authorization": self.pexels_api_key}
        params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
        base_name_for_pexels, _ = os.path.splitext(output_filename_base)
        pexels_filename = base_name_for_pexels + f"_pexels_{random.randint(1000,9999)}.jpg"
        filepath = os.path.join(self.output_dir, pexels_filename)
        try:
            logger.info(f"Pexels: Searching for '{query}'")
            effective_query = " ".join(query.split()[:5])
            params["query"] = effective_query
            response = requests.get(
                "https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20
            )
            response.raise_for_status()
            data = response.json()
            if data.get("photos") and len(data["photos"]) > 0:
                photo_details = data["photos"][0]
                photo_url = photo_details.get("src", {}).get("large2x")
                if not photo_url:
                    logger.warning(
                        f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"
                    )
                    return None
                image_response = requests.get(photo_url, timeout=60)
                image_response.raise_for_status()
                img_data_pil = Image.open(io.BytesIO(image_response.content))
                if img_data_pil.mode != "RGB":
                    img_data_pil = img_data_pil.convert("RGB")
                img_data_pil.save(filepath)
                logger.info(f"Pexels: Image saved to {filepath}")
                return filepath
            else:
                logger.info(f"Pexels: No photos for '{effective_query}'.")
                return None
        except requests.exceptions.RequestException as e_req:
            logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False)
            return None  # Less verbose for network
        except Exception as e:
            logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True)
            return None

    # --- RunwayML Video Generation (Gen-4 Aligned with SDK) ---
    def _generate_video_clip_with_runwayml(
        self,
        text_prompt_for_motion,
        input_image_path,
        scene_identifier_filename_base,
        target_duration_seconds=5,
    ):
        if not self.USE_RUNWAYML or not self.runway_ml_client_instance:
            logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.")
            return None
        if not input_image_path or not os.path.exists(input_image_path):
            logger.error(
                f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}"
            )
            return None

        image_data_uri = self._image_to_data_uri(input_image_path)
        if not image_data_uri:
            return None

        runway_duration = 10 if target_duration_seconds >= 8 else 5  # Map to 5s or 10s for Gen-4
        runway_ratio_str = self._map_resolution_to_runway_ratio(
            self.video_frame_size[0], self.video_frame_size[1]
        )

        # Use a more descriptive output filename for Runway videos
        base_name_for_runway, _ = os.path.splitext(scene_identifier_filename_base)
        output_video_filename = base_name_for_runway + f"_runway_gen4_d{runway_duration}s.mp4"
        output_video_filepath = os.path.join(self.output_dir, output_video_filename)

        logger.info(
            f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'"
        )
        try:
            # Using the RunwayML Python SDK structure
            task_submission = self.runway_ml_client_instance.image_to_video.create(
                model="gen4_turbo",
                prompt_image=image_data_uri,
                prompt_text=text_prompt_for_motion,  # This is the motion prompt
                duration=runway_duration,
                ratio=runway_ratio_str,
                # seed=random.randint(0, 4294967295), # Optional: for reproducibility
                # Other Gen-4 params (motion_score, upscale, watermark etc. can be added here if available in SDK)
            )
            task_id = task_submission.id
            logger.info(f"Runway Gen-4 task created with ID: {task_id}. Polling for completion...")

            poll_interval_seconds = 10
            max_polling_duration_seconds = 6 * 60  # 6 minutes
            start_time = time.time()

            while time.time() - start_time < max_polling_duration_seconds:
                time.sleep(poll_interval_seconds)
                task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id)
                logger.info(f"Runway task {task_id} status: {task_details.status}")

                if task_details.status == "SUCCEEDED":
                    # Determine output URL (this structure might vary based on SDK version)
                    output_url = None
                    if hasattr(task_details, "output") and task_details.output and hasattr(
                        task_details.output, "url"
                    ):
                        output_url = task_details.output.url
                    elif (
                        hasattr(task_details, "artifacts")
                        and task_details.artifacts
                        and isinstance(task_details.artifacts, list)
                        and len(task_details.artifacts) > 0
                    ):
                        first_artifact = task_details.artifacts[0]
                        if hasattr(first_artifact, "url"):
                            output_url = first_artifact.url
                        elif hasattr(first_artifact, "download_url"):
                            output_url = first_artifact.download_url

                    if not output_url:
                        logger.error(
                            f"Runway task {task_id} SUCCEEDED, but no output URL found. Details: {vars(task_details) if hasattr(task_details,'__dict__') else str(task_details)}"
                        )
                        return None

                    logger.info(f"Runway task {task_id} SUCCEEDED. Downloading video from: {output_url}")
                    video_response = requests.get(output_url, stream=True, timeout=300)
                    video_response.raise_for_status()
                    with open(output_video_filepath, "wb") as f:
                        for chunk in video_response.iter_content(chunk_size=8192):
                            f.write(chunk)
                    logger.info(
                        f"Runway Gen-4 video successfully downloaded to: {output_video_filepath}"
                    )
                    return output_video_filepath

                elif task_details.status in ["FAILED", "ABORTED", "ERROR"]:  # Added ERROR
                    error_msg = (
                        getattr(task_details, "error_message", None)
                        or getattr(getattr(task_details, "output", None), "error", "Unknown error from Runway task.")
                    )
                    logger.error(
                        f"Runway task {task_id} final status: {task_details.status}. Error: {error_msg}"
                    )
                    return None

            logger.warning(
                f"Runway task {task_id} timed out polling after {max_polling_duration_seconds} seconds."
            )
            return None

        except AttributeError as ae:  # If SDK methods are not as expected
            logger.error(
                f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods/attributes match documentation.",
                exc_info=True,
            )
            return None
        except Exception as e_runway_call:
            logger.error(
                f"General error during Runway Gen-4 API call or processing: {e_runway_call}",
                exc_info=True,
            )
            return None

    def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
        # (Keeping as before)
        if size is None:
            size = self.video_frame_size
        fp = os.path.join(self.output_dir, filename)
        tc = None
        try:
            tc = TextClip(
                text_description,
                fontsize=50,
                color="white",
                font=self.video_overlay_font,
                bg_color="black",
                size=size,
                method="caption",
            ).set_duration(duration)
            tc.write_videofile(
                fp, fps=24, codec="libx264", preset="ultrafast", logger=None, threads=2
            )
            logger.info(f"Generic placeholder video: {fp}")
            return fp
        except Exception as e:
            logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True)
            return None
        finally:
            if tc and hasattr(tc, "close"):
                tc.close()

    # --- generate_scene_asset (Main asset generation logic using Runway Gen-4 workflow) ---
    def generate_scene_asset(
        self,
        image_generation_prompt_text,
        motion_prompt_text_for_video,
        scene_data,
        scene_identifier_filename_base,
        generate_as_video_clip=False,
        runway_target_duration=5,
    ):
        # (Logic updated for improved DALL路E and RunwayML fallback)
        base_name, _ = os.path.splitext(scene_identifier_filename_base)
        asset_info = {
            "path": None,
            "type": "none",
            "error": True,
            "prompt_used": image_generation_prompt_text,
            "error_message": "Asset generation init failed",
        }
        input_image_for_runway_path = None
        # Use a distinct name for the base image if it's only an intermediate step for video
        base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
        base_image_filepath = os.path.join(self.output_dir, base_image_filename)

        # STEP 1: Generate/acquire the base image via DALL路E
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            try:
                logger.info(f"Calling DALL路E with prompt: {image_generation_prompt_text[:70]}...")
                response = openai.Image.create(
                    prompt=image_generation_prompt_text,
                    n=1,
                    size=self.image_size_dalle3,
                    model=self.dalle_model,
                )
                image_url = response["data"][0]["url"]
                ir = requests.get(image_url, timeout=120)
                ir.raise_for_status()
                id_img = Image.open(io.BytesIO(ir.content))
                if id_img.mode != "RGB":
                    id_img = id_img.convert("RGB")
                id_img.save(base_image_filepath)
                logger.info(f"DALL路E base image saved: {base_image_filepath}")
                input_image_for_runway_path = base_image_filepath
                asset_info = {
                    "path": base_image_filepath,
                    "type": "image",
                    "error": False,
                    "prompt_used": image_generation_prompt_text,
                }
            except openai.error.OpenAIError as e:
                logger.warning(f"DALL路E error: {e}. Falling back to Pexels or placeholder.")
                asset_info["error_message"] = str(e)
            except Exception as e:
                logger.error(f"Unexpected DALL路E error: {e}", exc_info=True)
                asset_info["error_message"] = str(e)

        # STEP 2: If DALL路E failed, try Pexels
        if asset_info["error"] and self.USE_PEXELS:
            logger.info("Attempting Pexels fallback for base image.")
            pqt = scene_data.get(
                "pexels_search_query_臧愲弲", f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}"
            )
            pp = self._search_pexels_image(pqt, base_image_filename)
            if pp:
                input_image_for_runway_path = pp
                asset_info = {
                    "path": pp,
                    "type": "image",
                    "error": False,
                    "prompt_used": f"Pexels:{pqt}",
                }
            else:
                current_em = asset_info.get("error_message", "")
                asset_info["error_message"] = (current_em + " Pexels fallback failed.").strip()

        # STEP 3: If both DALL路E and Pexels failed, create placeholder
        if asset_info["error"]:
            logger.warning("Both DALL路E and Pexels failed. Creating placeholder image.")
            ppt = asset_info.get("prompt_used", image_generation_prompt_text)
            php = self._create_placeholder_image_content(
                f"[Placeholder for] {ppt[:70]}...", base_image_filename
            )
            if php:
                input_image_for_runway_path = php
                asset_info = {
                    "path": php,
                    "type": "image",
                    "error": False,
                    "prompt_used": ppt,
                }
            else:
                current_em = asset_info.get("error_message", "")
                asset_info["error_message"] = (current_em + " Placeholder creation failed.").strip()

        # STEP 4: If a video clip is requested, attempt RunwayML
        if generate_as_video_clip:
            if not input_image_for_runway_path or not os.path.exists(input_image_for_runway_path):
                logger.error("No valid base image for RunwayML. Skipping video generation.")
                asset_info["error"] = True
                asset_info["error_message"] = (asset_info.get("error_message", "") + " No base image.").strip()
                asset_info["type"] = "none"
                return asset_info

            if self.USE_RUNWAYML and self.runway_ml_client_instance:
                video_path = self._generate_video_clip_with_runwayml(
                    motion_prompt_text_for_video,
                    input_image_for_runway_path,
                    base_name,
                    runway_target_duration,
                )
                if video_path and os.path.exists(video_path):
                    asset_info = {
                        "path": video_path,
                        "type": "video",
                        "error": False,
                        "prompt_used": motion_prompt_text_for_video,
                        "base_image_path": input_image_for_runway_path,
                    }
                else:
                    logger.warning("RunwayML video generation failed. Returning base image instead.")
                    asset_info = {
                        "path": input_image_for_runway_path,
                        "type": "image",
                        "error": True,
                        "prompt_used": image_generation_prompt_text,
                        "error_message": (asset_info.get("error_message", "") + " RunwayML failed.").strip(),
                    }
            else:
                logger.warning("RunwayML not enabled or client not initialized. Skipping video generation.")
                asset_info = {
                    "path": input_image_for_runway_path,
                    "type": "image",
                    "error": True,
                    "prompt_used": image_generation_prompt_text,
                    "error_message": (asset_info.get("error_message", "") + " RunwayML disabled.").strip(),
                }

        return asset_info

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        # (Keep as before - robust enough)
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
            logger.info("ElevenLabs audio skipped.")
            return None

        afp = os.path.join(self.output_dir, output_filename)
        try:
            logger.info(f"ElevenLabs audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}...")
            asm = None

            if hasattr(self.elevenlabs_client, "text_to_speech") and hasattr(
                self.elevenlabs_client.text_to_speech, "stream"
            ):
                asm = self.elevenlabs_client.text_to_speech.stream
                logger.info("Using ElevenLabs .text_to_speech.stream()")
            elif hasattr(self.elevenlabs_client, "generate_stream"):
                asm = self.elevenlabs_client.generate_stream
                logger.info("Using ElevenLabs .generate_stream()")
            elif hasattr(self.elevenlabs_client, "generate"):
                logger.info("Using ElevenLabs .generate()")
                vp = (
                    Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings)
                    if Voice and self.elevenlabs_voice_settings
                    else str(self.elevenlabs_voice_id)
                )
                ab = self.elevenlabs_client.generate(
                    text=text_to_narrate, voice=vp, model="eleven_multilingual_v2"
                )
                with open(afp, "wb") as f:
                    f.write(ab)
                logger.info(f"ElevenLabs audio (non-stream) saved: {afp}")
                return afp
            else:
                logger.error("No ElevenLabs audio method available.")
                return None

            # If we have a streaming method (asm), use it
            if asm:
                vps = {"voice_id": str(self.elevenlabs_voice_id)}
                if self.elevenlabs_voice_settings:
                    if hasattr(self.elevenlabs_voice_settings, "model_dump"):
                        vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
                    elif hasattr(self.elevenlabs_voice_settings, "dict"):
                        vps["voice_settings"] = self.elevenlabs_voice_settings.dict()
                    else:
                        vps["voice_settings"] = self.elevenlabs_voice_settings

                adi = asm(text=text_to_narrate, model_id="eleven_multilingual_v2", **vps)
                with open(afp, "wb") as f:
                    for c in adi:
                        if c:
                            f.write(c)
                logger.info(f"ElevenLabs audio (stream) saved: {afp}")
                return afp

        except Exception as e:
            logger.error(f"ElevenLabs audio error: {e}", exc_info=True)
            return None

    # --- assemble_animatic_from_assets (Still contains crucial debug saves for blank video issue) ---
    def assemble_animatic_from_assets(
        self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24
    ):
        # (Keep the version with robust image processing, C-contiguous arrays, debug saves, and pix_fmt)
        if not asset_data_list:
            logger.warning("No assets for animatic.")
            return None

        processed_clips = []
        narration_clip = None
        final_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")

        for i, asset_info in enumerate(asset_data_list):
            asset_path = asset_info.get("path")
            asset_type = asset_info.get("type")
            scene_dur = asset_info.get("duration", 4.5)
            scene_num = asset_info.get("scene_num", i + 1)
            key_action = asset_info.get("key_action", "")
            logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")

            if not (asset_path and os.path.exists(asset_path)):
                logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.")
                continue
            if scene_dur <= 0:
                logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.")
                continue

            current_scene_mvpy_clip = None
            try:
                if asset_type == "image":
                    pil_img = Image.open(asset_path)
                    logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
                    img_rgba = pil_img.convert("RGBA") if pil_img.mode != "RGBA" else pil_img.copy()
                    thumb = img_rgba.copy()
                    rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, "LANCZOS") else Image.BILINEAR
                    thumb.thumbnail(self.video_frame_size, rf)
                    cv_rgba = Image.new("RGBA", self.video_frame_size, (0, 0, 0, 0))
                    xo, yo = (
                        (self.video_frame_size[0] - thumb.width) // 2,
                        (self.video_frame_size[1] - thumb.height) // 2,
                    )
                    cv_rgba.paste(thumb, (xo, yo), thumb)
                    final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0))
                    final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3])
                    dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png")
                    final_rgb_pil.save(dbg_path)
                    logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
                    frame_np = np.array(final_rgb_pil, dtype=np.uint8)
                    if not frame_np.flags["C_CONTIGUOUS"]:
                        frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8)
                    logger.debug(
                        f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}"
                    )
                    if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
                        logger.error(f"S{scene_num}: Invalid NumPy. Skip.")
                        continue
                    clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur)
                    mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
                    clip_base.save_frame(mvpy_dbg_path, t=0.1)
                    logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
                    clip_fx = clip_base
                    try:
                        es = random.uniform(1.03, 1.08)
                        clip_fx = clip_base.fx(
                            vfx.resize, lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1
                        ).set_position("center")
                    except Exception as e:
                        logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False)
                    current_scene_mvpy_clip = clip_fx

                elif asset_type == "video":
                    src_clip = None
                    try:
                        src_clip = VideoFileClip(
                            asset_path,
                            target_resolution=(
                                self.video_frame_size[1],
                                self.video_frame_size[0],
                            )
                            if self.video_frame_size
                            else None,
                            audio=False,
                        )
                        tmp_clip = src_clip
                        if src_clip.duration != scene_dur:
                            if src_clip.duration > scene_dur:
                                tmp_clip = src_clip.subclip(0, scene_dur)
                            else:
                                if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1:
                                    tmp_clip = src_clip.loop(duration=scene_dur)
                                else:
                                    tmp_clip = src_clip.set_duration(src_clip.duration)
                                    logger.info(
                                        f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s)."
                                    )
                        current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur)
                        if current_scene_mvpy_clip.size != list(self.video_frame_size):
                            current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size)
                    except Exception as e:
                        logger.error(f"S{scene_num} Video load error '{asset_path}':{e}", exc_info=True)
                        continue
                    finally:
                        if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, "close"):
                            src_clip.close()
                else:
                    logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.")
                    continue

                if current_scene_mvpy_clip and key_action:
                    try:
                        to_dur = (
                            min(current_scene_mvpy_clip.duration - 0.5, current_scene_mvpy_clip.duration * 0.8)
                            if current_scene_mvpy_clip.duration > 0.5
                            else current_scene_mvpy_clip.duration
                        )
                        to_start = 0.25
                        if to_dur > 0:
                            txt_c = TextClip(
                                f"Scene {scene_num}\n{key_action}",
                                fontsize=self.VIDEO_OVERLAY_FONT_SIZE,
                                color=self.VIDEO_OVERLAY_FONT_COLOR,
                                font=self.video_overlay_font,
                                bg_color="rgba(10,10,20,0.7)",
                                method="caption",
                                align="West",
                                size=(self.video_frame_size[0] * 0.9, None),
                                kerning=-1,
                                stroke_color="black",
                                stroke_width=1.5,
                            ).set_duration(to_dur).set_start(to_start).set_position(
                                ("center", 0.92), relative=True
                            )
                            current_scene_mvpy_clip = CompositeVideoClip(
                                [current_scene_mvpy_clip, txt_c], size=self.video_frame_size, use_bgclip=True
                            )
                        else:
                            logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
                    except Exception as e:
                        logger.error(f"S{scene_num} TextClip error:{e}. No text.", exc_info=True)

                if current_scene_mvpy_clip:
                    processed_clips.append(current_scene_mvpy_clip)
                    logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
            except Exception as e:
                logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}", exc_info=True)
            finally:
                if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, "close"):
                    try:
                        current_scene_mvpy_clip.close()
                    except:
                        pass

        if not processed_clips:
            logger.warning("No clips processed. Abort.")
            return None

        td = 0.75
        try:
            logger.info(f"Concatenating {len(processed_clips)} clips.")
            if len(processed_clips) > 1:
                final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose")
            elif processed_clips:
                final_clip = processed_clips[0]
            if not final_clip:
                logger.error("Concatenation failed.")
                return None

            logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
            if td > 0 and final_clip.duration > 0:
                if final_clip.duration > td * 2:
                    final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td)
                else:
                    final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0))

            if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0:
                try:
                    narration_clip = AudioFileClip(overall_narration_path)
                    final_clip = final_clip.set_audio(narration_clip)
                    logger.info("Narration added.")
                except Exception as e:
                    logger.error(f"Narration add error:{e}", exc_info=True)
            elif final_clip.duration <= 0:
                logger.warning("Video no duration. No audio.")

            if final_clip and final_clip.duration > 0:
                op = os.path.join(self.output_dir, output_filename)
                logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
                final_clip.write_videofile(
                    op,
                    fps=fps,
                    codec="libx264",
                    preset="medium",
                    audio_codec="aac",
                    temp_audiofile=os.path.join(self.output_dir, f"temp-audio-{os.urandom(4).hex()}.m4a"),
                    remove_temp=True,
                    threads=os.cpu_count() or 2,
                    logger="bar",
                    bitrate="5000k",
                    ffmpeg_params=["-pix_fmt", "yuv420p"],
                )
                logger.info(f"Video created:{op}")
                return op
            else:
                logger.error("Final clip invalid. No write.")
                return None
        except Exception as e:
            logger.error(f"Video write error:{e}", exc_info=True)
            return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
            all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
            for clip_obj_to_close in all_clips_to_close:
                if clip_obj_to_close and hasattr(clip_obj_to_close, "close"):
                    try:
                        clip_obj_to_close.close()
                    except Exception as e_close:
                        logger.warning(
                            f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}"
                        )