File size: 42,415 Bytes
e0b9b11 4da81e5 a219e07 5089920 9840152 5089920 990e23e 92cb699 5089920 92cb699 4da81e5 200c5c4 59af6e7 f13d4b2 a219e07 cb93f9c a219e07 f13d4b2 5089920 f13d4b2 a219e07 5089920 a219e07 5089920 d44d308 cb93f9c 4c2220b f13d4b2 287c9ca 92cb699 e0b9b11 cb93f9c a219e07 5089920 a219e07 cb93f9c e0b9b11 a219e07 d44d308 a219e07 d44d308 cb93f9c a219e07 200c5c4 09d5c67 a219e07 d44d308 a219e07 d44d308 cb93f9c d44d308 cb93f9c a219e07 cb93f9c a219e07 cb93f9c a219e07 cb93f9c a219e07 d44d308 a219e07 d44d308 a219e07 d44d308 a219e07 d44d308 a219e07 4da81e5 a219e07 4da81e5 a219e07 d44d308 a219e07 d44d308 a219e07 d44d308 a219e07 d44d308 a219e07 cb93f9c 4da81e5 a219e07 4da81e5 a219e07 4da81e5 a219e07 4da81e5 a219e07 cb93f9c a219e07 cb93f9c a219e07 d44d308 a219e07 cb93f9c a219e07 cb93f9c a219e07 d44d308 a219e07 cb93f9c a219e07 cb93f9c a219e07 d44d308 a219e07 cb93f9c a219e07 cb93f9c a219e07 cb93f9c 4da81e5 a219e07 5089920 a219e07 5089920 a219e07 5089920 a219e07 cb93f9c a219e07 4da81e5 a219e07 59af6e7 a219e07 4da81e5 a219e07 d44d308 4da81e5 a219e07 d44d308 4da81e5 a219e07 cb93f9c d44d308 a219e07 4da81e5 cb93f9c e0b9b11 a219e07 cb93f9c 5089920 a219e07 cb93f9c a219e07 5089920 a219e07 cb93f9c a219e07 cb93f9c 8583908 5089920 a219e07 cb93f9c a219e07 cb93f9c a219e07 cb93f9c a219e07 cb93f9c a219e07 5089920 a219e07 3313da9 a219e07 cb93f9c a219e07 59af6e7 a219e07 cb93f9c 59af6e7 a219e07 d44d308 a219e07 cb93f9c a219e07 cb93f9c a219e07 b97795f a219e07 cb93f9c a219e07 754c854 3313da9 4da81e5 d44d308 a219e07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import json
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
import mimetypes
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- MONKEY PATCH ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'):
Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'):
Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow ANTIALIAS/Resampling issue.")
except Exception as e_mp:
print(f"WARNING: ANTIALIAS patch error: {e_mp}")
# --- SERVICE CLIENT IMPORTS ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
logger.info("ElevenLabs client components imported.")
except Exception as e_eleven:
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
RUNWAYML_SDK_IMPORTED = False
RunwayMLAPIClient = None
try:
from runwayml import RunwayML as ImportedRunwayMLClient
RunwayMLAPIClient = ImportedRunwayMLClient
RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK imported successfully.")
except ImportError:
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk}. RunwayML features disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "DejaVuSans-Bold.ttf"
font_paths_to_try = [
self.font_filename,
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
"/System/Library/Fonts/Supplemental/Arial.ttf",
"C:/Windows/Fonts/arial.ttf",
"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"
]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'DejaVu-Sans-Bold'
try:
if self.font_path_pil:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
logger.info(f"Pillow font: {self.font_path_pil}.")
else:
self.font = ImageFont.load_default()
logger.warning("Default Pillow font.")
self.font_size_pil = 10
except IOError as e_font:
logger.error(f"Pillow font IOError: {e_font}. Default.")
self.font = ImageFont.load_default()
self.font_size_pil = 10
self.openai_api_key = None
self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"
self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None
self.USE_ELEVENLABS = False
self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
self.elevenlabs_voice_settings = VoiceSettings(
stability=0.60,
similarity_boost=0.80,
style=0.15,
use_speaker_boost=True
)
else:
self.elevenlabs_voice_settings = None
self.pexels_api_key = None
self.USE_PEXELS = False
self.runway_api_key = None
self.USE_RUNWAYML = False
self.runway_client = None
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
try:
if os.getenv("RUNWAYML_API_SECRET"):
self.runway_client = RunwayMLAPIClient()
logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var.")
except Exception as e_runway_init:
logger.error(f"Failed to initialize RunwayML client during __init__: {e_runway_init}", exc_info=True)
logger.info("VisualEngine initialized.")
def set_openai_api_key(self, k):
self.openai_api_key = k
self.USE_AI_IMAGE_GENERATION = bool(k)
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
self.elevenlabs_api_key = api_key
if voice_id_from_secret:
self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
self.USE_ELEVENLABS = bool(self.elevenlabs_client)
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e:
logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True)
self.USE_ELEVENLABS = False
else:
self.USE_ELEVENLABS = False
logger.info("ElevenLabs Disabled (no key or SDK issue).")
def set_pexels_api_key(self, k):
self.pexels_api_key = k
self.USE_PEXELS = bool(k)
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k):
self.runway_api_key = k
if k:
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
if not self.runway_client:
try:
if not os.getenv("RUNWAYML_API_SECRET"):
os.environ["RUNWAYML_API_SECRET"] = k
logger.info("Setting RUNWAYML_API_SECRET env var from provided key.")
self.runway_client = RunwayMLAPIClient()
self.USE_RUNWAYML = True
logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
except Exception as e_client_init:
logger.error(f"RunwayML Client init failed in set_runway_api_key: {e_client_init}", exc_info=True)
self.USE_RUNWAYML = False
else:
self.USE_RUNWAYML = True
logger.info("RunwayML Client was already initialized.")
else:
logger.warning("RunwayML SDK not imported. API key set, but integration requires SDK.")
self.USE_RUNWAYML = False
else:
self.USE_RUNWAYML = False
logger.info("RunwayML Disabled (no API key).")
def _image_to_data_uri(self, image_path):
try:
mime_type, _ = mimetypes.guess_type(image_path)
if not mime_type:
ext = os.path.splitext(image_path)[1].lower()
if ext == ".png":
mime_type = "image/png"
elif ext in [".jpg", ".jpeg"]:
mime_type = "image/jpeg"
else:
mime_type = "application/octet-stream"
logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
data_uri = f"data:{mime_type};base64,{encoded_string}"
logger.debug(f"Data URI for {image_path} (first 100): {data_uri[:100]}")
return data_uri
except Exception as e:
logger.error(f"Error converting {image_path} to data URI: {e}", exc_info=True)
return None
def _map_resolution_to_runway_ratio(self, width, height):
ratio_str = f"{width}:{height}"
supported_ratios = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
if ratio_str in supported_ratios:
return ratio_str
logger.warning(f"Res {ratio_str} not directly Gen-4 supported. Default 1280:720.")
return "1280:720"
def _get_text_dimensions(self, text_content, font_obj):
default_char_height = getattr(font_obj, 'size', self.font_size_pil)
if not text_content:
return 0, default_char_height
try:
if hasattr(font_obj, 'getbbox'):
bbox = font_obj.getbbox(text_content)
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
return w, h if h > 0 else default_char_height
elif hasattr(font_obj, 'getsize'):
w, h = font_obj.getsize(text_content)
return w, h if h > 0 else default_char_height
else:
return int(len(text_content) * default_char_height * 0.6), int(default_char_height * 1.2)
except Exception as e:
logger.warning(f"Error in _get_text_dimensions: {e}")
return int(len(text_content) * self.font_size_pil * 0.6), int(self.font_size_pil * 1.2)
def _create_placeholder_image_content(self, text_description, filename, size=None):
if size is None:
size = self.video_frame_size
img = Image.new('RGB', size, color=(20, 20, 40))
d = ImageDraw.Draw(img)
padding = 25
max_w = size[0] - (2 * padding)
lines = []
if not text_description:
text_description = "(Placeholder Image)"
words = text_description.split()
current_line = ""
for word_idx, word in enumerate(words):
prospective_line_addition = word + (" " if word_idx < len(words) - 1 else "")
test_line = current_line + prospective_line_addition
current_line_width, _ = self._get_text_dimensions(test_line, self.font)
if current_line_width == 0 and test_line.strip():
current_line_width = len(test_line) * (self.font_size_pil * 0.6)
if current_line_width <= max_w:
current_line = test_line
else:
if current_line.strip():
lines.append(current_line.strip())
current_line = prospective_line_addition
if current_line.strip():
lines.append(current_line.strip())
if not lines and text_description:
avg_char_width, _ = self._get_text_dimensions("W", self.font)
if avg_char_width == 0:
avg_char_width = self.font_size_pil * 0.6
chars_per_line = int(max_w / avg_char_width) if avg_char_width > 0 else 20
lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
elif not lines:
lines.append("(Placeholder Error)")
_, single_line_h = self._get_text_dimensions("Ay", self.font)
single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
max_lines_to_display = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
if max_lines_to_display <= 0:
max_lines_to_display = 1
y_text_start = padding + (size[1] - (2 * padding) - max_lines_to_display * (single_line_h + 2)) / 2.0
y_text = y_text_start
for i in range(max_lines_to_display):
line_content = lines[i]
line_w, _ = self._get_text_dimensions(line_content, self.font)
if line_w == 0 and line_content.strip():
line_w = len(line_content) * (self.font_size_pil * 0.6)
x_text = (size[0] - line_w) / 2.0
try:
d.text((x_text, y_text), line_content, font=self.font, fill=(200, 200, 180))
except Exception as e_draw:
logger.error(f"Pillow d.text error: {e_draw} for line '{line_content}'")
y_text += single_line_h + 2
if i == 6 and max_lines_to_display > 7:
try:
d.text((x_text, y_text), "...", font=self.font, fill=(200, 200, 180))
except Exception as e_ellipsis:
logger.error(f"Pillow d.text ellipsis error: {e_ellipsis}")
break
filepath = os.path.join(self.output_dir, filename)
try:
img.save(filepath)
return filepath
except Exception as e:
logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True)
return None
def _search_pexels_image(self, query, output_filename_base):
# <<< CORRECTED METHOD >>>
if not self.USE_PEXELS or not self.pexels_api_key:
return None
headers = {"Authorization": self.pexels_api_key}
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg")\
.replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Pexels search: '{query}'")
effective_query = " ".join(query.split()[:5])
params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status()
data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_url = data["photos"][0]["src"]["large2x"]
image_response = requests.get(photo_url, timeout=60)
image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB':
img_data = img_data.convert('RGB')
img_data.save(filepath)
logger.info(f"Pexels image saved: {filepath}")
return filepath
else:
logger.info(f"No photos found on Pexels for query: '{effective_query}'")
return None
except requests.exceptions.RequestException as e_req:
logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True)
except json.JSONDecodeError as e_json:
logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True)
except IOError as e_io:
logger.error(f"Pexels image save error for query '{query}': {e_io}", exc_info=True)
except Exception as e:
logger.error(f"Unexpected Pexels error for query '{query}': {e}", exc_info=True)
return None
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path,
scene_identifier_filename_base, target_duration_seconds=5):
if not self.USE_RUNWAYML or not self.runway_client:
logger.warning("RunwayML not enabled/client not init. Skip video.")
return None
if not input_image_path or not os.path.exists(input_image_path):
logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}")
return None
image_data_uri = self._image_to_data_uri(input_image_path)
if not image_data_uri:
return None
runway_duration = 10 if target_duration_seconds > 7 else 5
runway_ratio_str = self._map_resolution_to_runway_ratio(
self.video_frame_size[0], self.video_frame_size[1]
)
output_video_filename = scene_identifier_filename_base.replace(
".png", f"_runway_gen4_d{runway_duration}s.mp4"
)
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', "
f"img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
try:
task = self.runway_client.image_to_video.create(
model='gen4_turbo',
prompt_image=image_data_uri,
prompt_text=text_prompt_for_motion,
duration=runway_duration,
ratio=runway_ratio_str
)
logger.info(f"Runway Gen-4 task ID: {task.id}. Polling...")
poll_interval = 10
max_polls = 36
for _ in range(max_polls):
time.sleep(poll_interval)
task_details = self.runway_client.tasks.retrieve(id=task.id)
logger.info(f"Runway task {task.id} status: {task_details.status}")
if task_details.status == 'SUCCEEDED':
output_url = (
getattr(getattr(task_details, 'output', None), 'url', None)
or (
getattr(task_details, 'artifacts', None)
and task_details.artifacts[0].url
if task_details.artifacts and hasattr(task_details.artifacts[0], 'url')
else None
)
or (
getattr(task_details, 'artifacts', None)
and task_details.artifacts[0].download_url
if task_details.artifacts and hasattr(task_details.artifacts[0], 'download_url')
else None
)
)
if not output_url:
logger.error(
f"Runway task {task.id} SUCCEEDED, but no output URL in details: "
f"{vars(task_details) if hasattr(task_details, '__dict__') else task_details}"
)
return None
logger.info(f"Runway task {task.id} SUCCEEDED. Downloading from: {output_url}")
video_response = requests.get(output_url, stream=True, timeout=300)
video_response.raise_for_status()
with open(output_video_filepath, 'wb') as f:
for chunk in video_response.iter_content(chunk_size=8192):
f.write(chunk)
logger.info(f"Runway Gen-4 video saved: {output_video_filepath}")
return output_video_filepath
elif task_details.status in ['FAILED', 'ABORTED']:
em = (
getattr(task_details, 'error_message', None)
or getattr(getattr(task_details, 'output', None), 'error', "Unknown error")
)
logger.error(f"Runway task {task.id} status: {task_details.status}. Error: {em}")
return None
logger.warning(f"Runway task {task.id} timed out.")
return None
except AttributeError as ae:
logger.error(f"RunwayML SDK AttributeError: {ae}. SDK/methods might differ.", exc_info=True)
return None
except Exception as e:
logger.error(f"Runway Gen-4 API error: {e}", exc_info=True)
return None
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None):
if sz is None:
sz = self.video_frame_size
fp = os.path.join(self.output_dir, fn)
tc = None
try:
tc = TextClip(
td,
fontsize=50,
color='white',
font=self.video_overlay_font,
bg_color='black',
size=sz,
method='caption'
).set_duration(dur)
tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Generic placeholder video: {fp}")
return fp
except Exception as e:
logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True)
return None
finally:
if tc and hasattr(tc, 'close'):
tc.close()
def generate_scene_asset(
self,
image_generation_prompt_text,
motion_prompt_text_for_video,
scene_data,
scene_identifier_filename_base,
generate_as_video_clip=False,
runway_target_duration=5
):
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {
'path': None,
'type': 'none',
'error': True,
'prompt_used': image_generation_prompt_text,
'error_message': 'Asset generation init failed'
}
input_image_for_runway_path = None
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
base_image_filepath = os.path.join(self.output_dir, base_image_filename)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_r = 2
for att_n in range(max_r):
try:
logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...")
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
r = cl.images.generate(
model=self.dalle_model,
prompt=image_generation_prompt_text,
n=1,
size=self.image_size_dalle3,
quality="hd",
response_format="url",
style="vivid"
)
iu = r.data[0].url
rp = getattr(r.data[0], 'revised_prompt', None)
if rp:
logger.info(f"DALL-E revised: {rp[:70]}...")
ir = requests.get(iu, timeout=120)
ir.raise_for_status()
id_img = Image.open(io.BytesIO(ir.content))
if id_img.mode != 'RGB':
id_img = id_img.convert('RGB')
id_img.save(base_image_filepath)
logger.info(f"DALL-E base img saved: {base_image_filepath}")
input_image_for_runway_path = base_image_filepath
asset_info = {
'path': base_image_filepath,
'type': 'image',
'error': False,
'prompt_used': image_generation_prompt_text,
'revised_prompt': rp
}
break
except openai.RateLimitError as e:
logger.warning(f"OpenAI RateLimit {att_n+1}:{e}. Retry...")
time.sleep(5 * (att_n + 1))
asset_info['error_message'] = str(e)
except Exception as e:
logger.error(f"DALL-E base img error: {e}", exc_info=True)
asset_info['error_message'] = str(e)
break
if asset_info['error']:
logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
if asset_info['error'] and self.USE_PEXELS:
logger.info("Trying Pexels for base img.")
pqt = scene_data.get('pexels_search_query_๊ฐ๋
', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pp = self._search_pexels_image(pqt, base_image_filename)
if pp:
input_image_for_runway_path = pp
asset_info = {
'path': pp,
'type': 'image',
'error': False,
'prompt_used': f"Pexels:{pqt}"
}
else:
current_em = asset_info.get('error_message', "")
asset_info['error_message'] = (current_em + " Pexels failed for base.").strip()
if asset_info['error']:
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.")
ppt = asset_info.get('prompt_used', image_generation_prompt_text)
php = self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...", base_image_filename)
if php:
input_image_for_runway_path = php
asset_info = {
'path': php,
'type': 'image',
'error': False,
'prompt_used': ppt
}
else:
current_em = asset_info.get('error_message', "")
asset_info['error_message'] = (current_em + " Base placeholder failed.").strip()
if generate_as_video_clip:
if not input_image_for_runway_path:
logger.error("RunwayML video: base img failed.")
asset_info['error'] = True
asset_info['error_message'] = (asset_info.get('error_message', "") + " Base img miss, Runway abort.").strip()
asset_info['type'] = 'none'
return asset_info
if self.USE_RUNWAYML:
logger.info(f"Runway Gen-4 video for {base_name} using base: {input_image_for_runway_path}")
video_path = self._generate_video_clip_with_runwayml(
motion_prompt_text_for_video,
input_image_for_runway_path,
base_name,
runway_target_duration
)
if video_path and os.path.exists(video_path):
asset_info = {
'path': video_path,
'type': 'video',
'error': False,
'prompt_used': motion_prompt_text_for_video,
'base_image_path': input_image_for_runway_path
}
else:
logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.")
asset_info['error'] = True
asset_info['error_message'] = (
asset_info.get('error_message', "Base img ok.") +
" RunwayML video fail; use base img."
).strip()
asset_info['path'] = input_image_for_runway_path
asset_info['type'] = 'image'
asset_info['prompt_used'] = image_generation_prompt_text
else:
logger.warning("RunwayML selected but disabled. Use base img.")
asset_info['error'] = True
asset_info['error_message'] = (
asset_info.get('error_message', "Base img ok.") +
" RunwayML disabled; use base img."
).strip()
asset_info['path'] = input_image_for_runway_path
asset_info['type'] = 'image'
asset_info['prompt_used'] = image_generation_prompt_text
return asset_info
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
logger.info("11L skip.")
return None
afp = os.path.join(self.output_dir, output_filename)
try:
logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}...")
asm = None
# Determine which ElevenLabs streaming/non-streaming method to use
if hasattr(self.elevenlabs_client, 'text_to_speech') and \
hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
asm = self.elevenlabs_client.text_to_speech.stream
logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client, 'generate_stream'):
asm = self.elevenlabs_client.generate_stream
logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client, 'generate'):
logger.info("Using 11L .generate()")
if Voice and self.elevenlabs_voice_settings:
vp = Voice(
voice_id=str(self.elevenlabs_voice_id),
settings=self.elevenlabs_voice_settings
)
else:
vp = str(self.elevenlabs_voice_id)
ab = self.elevenlabs_client.generate(
text=text_to_narrate,
voice=vp,
model="eleven_multilingual_v2"
)
with open(afp, "wb") as f:
f.write(ab)
logger.info(f"11L audio (non-stream): {afp}")
return afp
else:
logger.error("No 11L audio method.")
return None
# If a streaming method is available:
if asm:
vps = {"voice_id": str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings, 'model_dump'):
vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings, 'dict'):
vps["voice_settings"] = self.elevenlabs_voice_settings.dict()
else:
vps["voice_settings"] = self.elevenlabs_voice_settings
adi = asm(
text=text_to_narrate,
model_id="eleven_multilingual_v2",
**vps
)
with open(afp, "wb") as f:
for c in adi:
if c:
f.write(c)
logger.info(f"11L audio (stream): {afp}")
return afp
except Exception as e:
logger.error(f"11L audio error: {e}", exc_info=True)
return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list:
logger.warning("No assets for animatic.")
return None
processed_clips = []
narration_clip = None
final_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path = asset_info.get('path')
asset_type = asset_info.get('type')
scene_dur = asset_info.get('duration', 4.5)
scene_num = asset_info.get('scene_num', i + 1)
key_action = asset_info.get('key_action', '')
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
if not (asset_path and os.path.exists(asset_path)):
logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.")
continue
if scene_dur <= 0:
logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.")
continue
current_scene_mvpy_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path)
logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
thumb = img_rgba.copy()
rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else Image.BILINEAR
thumb.thumbnail(self.video_frame_size, rf)
cv_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0))
xo = (self.video_frame_size[0] - thumb.width) // 2
yo = (self.video_frame_size[1] - thumb.height) // 2
cv_rgba.paste(thumb, (xo, yo), thumb)
final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0))
final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3])
dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png")
final_rgb_pil.save(dbg_path)
logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
frame_np = np.array(final_rgb_pil, dtype=np.uint8)
if not frame_np.flags['C_CONTIGUOUS']:
frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8)
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
logger.error(f"S{scene_num}: Invalid NumPy. Skip.")
continue
clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur)
mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
clip_base.save_frame(mvpy_dbg_path, t=0.1)
logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
clip_fx = clip_base
try:
es = random.uniform(1.03, 1.08)
clip_fx = clip_base.fx(
vfx.resize,
lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1
).set_position('center')
except Exception as e:
logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False)
current_scene_mvpy_clip = clip_fx
elif asset_type == 'video':
src_clip = None
try:
src_clip = VideoFileClip(
asset_path,
target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None,
audio=False
)
tmp_clip = src_clip
if src_clip.duration != scene_dur:
if src_clip.duration > scene_dur:
tmp_clip = src_clip.subclip(0, scene_dur)
else:
if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1:
tmp_clip = src_clip.loop(duration=scene_dur)
else:
tmp_clip = src_clip.set_duration(src_clip.duration)
logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur)
if current_scene_mvpy_clip.size != list(self.video_frame_size):
current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e:
logger.error(f"S{scene_num} Video load error '{asset_path}': {e}", exc_info=True)
continue
finally:
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, 'close'):
src_clip.close()
else:
logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.")
continue
if current_scene_mvpy_clip and key_action:
try:
to_dur = min(current_scene_mvpy_clip.duration - 0.5,
current_scene_mvpy_clip.duration * 0.8) if current_scene_mvpy_clip.duration > 0.5 else current_scene_mvpy_clip.duration
to_start = 0.25
if to_dur > 0:
txt_c = TextClip(
f"Scene {scene_num}\n{key_action}",
fontsize=self.video_overlay_font_size,
color=self.video_overlay_font_color,
font=self.video_overlay_font,
bg_color='rgba(10,10,20,0.7)',
method='caption',
align='West',
size=(self.video_frame_size[0] * 0.9, None),
kerning=-1,
stroke_color='black',
stroke_width=1.5
).set_duration(to_dur).set_start(to_start).set_position(('center', 0.92), relative=True)
current_scene_mvpy_clip = CompositeVideoClip(
[current_scene_mvpy_clip, txt_c],
size=self.video_frame_size,
use_bgclip=True
)
else:
logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
except Exception as e:
logger.error(f"S{scene_num} TextClip error: {e}. No text.", exc_info=True)
if current_scene_mvpy_clip:
processed_clips.append(current_scene_mvpy_clip)
logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e:
logger.error(f"MAJOR Error S{scene_num} ({asset_path}): {e}", exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, 'close'):
try:
current_scene_mvpy_clip.close()
except Exception:
pass
if not processed_clips:
logger.warning("No clips processed. Abort.")
return None
td = 0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.")
if len(processed_clips) > 1:
final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose")
elif processed_clips:
final_clip = processed_clips[0]
if not final_clip:
logger.error("Concatenation failed.")
return None
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
if td > 0 and final_clip.duration > 0:
if final_clip.duration > td * 2:
final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td)
else:
final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0:
try:
narration_clip = AudioFileClip(overall_narration_path)
final_clip = final_clip.set_audio(narration_clip)
logger.info("Narration added.")
except Exception as e:
logger.error(f"Narration add error: {e}", exc_info=True)
elif final_clip.duration <= 0:
logger.warning("Video no duration. No audio.")
if final_clip and final_clip.duration > 0:
op = os.path.join(self.output_dir, output_filename)
logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
final_clip.write_videofile(
op,
fps=fps,
codec='libx264',
preset='medium',
audio_codec='aac',
temp_audiofile=os.path.join(
self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'
),
remove_temp=True,
threads=os.cpu_count() or 2,
logger='bar',
bitrate="5000k",
ffmpeg_params=["-pix_fmt", "yuv420p"]
)
logger.info(f"Video created:{op}")
return op
else:
logger.error("Final clip invalid. No write.")
return None
except Exception as e:
logger.error(f"Video write error: {e}", exc_info=True)
return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
for clip_obj_to_close in all_clips_to_close:
if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
try:
clip_obj_to_close.close()
except Exception as e_close:
logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}")
|