File size: 42,415 Bytes
e0b9b11
4da81e5
a219e07
5089920
9840152
5089920
990e23e
92cb699
 
 
 
 
5089920
92cb699
4da81e5
200c5c4
 
59af6e7
f13d4b2
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
a219e07
 
 
 
f13d4b2
5089920
f13d4b2
a219e07
 
 
 
 
 
 
5089920
a219e07
 
5089920
d44d308
cb93f9c
 
 
 
 
 
 
4c2220b
f13d4b2
287c9ca
92cb699
e0b9b11
 
cb93f9c
a219e07
 
 
 
 
 
 
 
5089920
a219e07
 
 
cb93f9c
e0b9b11
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d308
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d308
cb93f9c
a219e07
 
 
 
 
 
200c5c4
09d5c67
a219e07
 
 
 
 
 
 
 
 
d44d308
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d308
 
cb93f9c
 
d44d308
cb93f9c
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
 
 
 
 
 
a219e07
 
 
 
 
 
 
 
 
cb93f9c
a219e07
 
 
 
 
cb93f9c
 
a219e07
 
 
 
 
 
d44d308
a219e07
d44d308
a219e07
 
d44d308
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d308
 
 
 
a219e07
 
 
 
4da81e5
a219e07
 
4da81e5
a219e07
 
d44d308
 
a219e07
 
d44d308
 
a219e07
 
 
 
 
 
 
 
 
d44d308
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d308
a219e07
 
 
 
 
 
 
cb93f9c
4da81e5
 
a219e07
 
4da81e5
 
a219e07
 
4da81e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a219e07
4da81e5
 
 
 
 
 
 
 
a219e07
cb93f9c
a219e07
 
 
 
 
 
 
 
cb93f9c
a219e07
 
d44d308
a219e07
 
 
 
 
 
cb93f9c
a219e07
 
cb93f9c
a219e07
 
 
 
 
 
 
d44d308
a219e07
 
cb93f9c
a219e07
 
cb93f9c
 
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d308
a219e07
 
cb93f9c
a219e07
 
 
 
cb93f9c
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
4da81e5
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5089920
a219e07
 
5089920
a219e07
 
 
 
 
 
 
 
 
5089920
a219e07
 
 
 
 
 
 
cb93f9c
 
 
a219e07
4da81e5
a219e07
59af6e7
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da81e5
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d308
4da81e5
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d308
4da81e5
a219e07
 
 
 
 
 
cb93f9c
d44d308
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da81e5
cb93f9c
e0b9b11
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
5089920
a219e07
 
 
 
 
 
 
cb93f9c
a219e07
5089920
a219e07
 
 
 
 
cb93f9c
a219e07
 
 
 
 
 
 
 
cb93f9c
8583908
5089920
a219e07
 
cb93f9c
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
a219e07
 
 
 
 
 
 
 
 
 
cb93f9c
a219e07
 
 
 
 
 
 
 
 
cb93f9c
a219e07
5089920
a219e07
3313da9
a219e07
 
 
 
 
 
 
 
 
cb93f9c
a219e07
 
 
 
 
 
 
 
 
 
 
59af6e7
a219e07
 
 
 
 
 
cb93f9c
59af6e7
a219e07
 
 
d44d308
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
a219e07
 
 
 
 
cb93f9c
a219e07
 
 
 
 
b97795f
a219e07
 
 
 
 
 
 
 
cb93f9c
a219e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754c854
3313da9
4da81e5
d44d308
 
a219e07
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import json
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
import mimetypes

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# --- MONKEY PATCH ---
try:
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
        if not hasattr(Image, 'ANTIALIAS'):
            Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'):
        if not hasattr(Image, 'ANTIALIAS'):
            Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'):
        print("WARNING: Pillow ANTIALIAS/Resampling issue.")
except Exception as e_mp:
    print(f"WARNING: ANTIALIAS patch error: {e_mp}")

# --- SERVICE CLIENT IMPORTS ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient
    Voice = ImportedVoice
    VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True
    logger.info("ElevenLabs client components imported.")
except Exception as e_eleven:
    logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")

RUNWAYML_SDK_IMPORTED = False
RunwayMLAPIClient = None
try:
    from runwayml import RunwayML as ImportedRunwayMLClient
    RunwayMLAPIClient = ImportedRunwayMLClient
    RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK imported successfully.")
except ImportError:
    logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
    logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk}. RunwayML features disabled.")


class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        self.font_filename = "DejaVuSans-Bold.ttf"
        font_paths_to_try = [
            self.font_filename,
            "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
            "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
            "/System/Library/Fonts/Supplemental/Arial.ttf",
            "C:/Windows/Fonts/arial.ttf",
            "/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"
        ]
        self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
        self.font_size_pil = 20
        self.video_overlay_font_size = 30
        self.video_overlay_font_color = 'white'
        self.video_overlay_font = 'DejaVu-Sans-Bold'
        try:
            if self.font_path_pil:
                self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
                logger.info(f"Pillow font: {self.font_path_pil}.")
            else:
                self.font = ImageFont.load_default()
                logger.warning("Default Pillow font.")
                self.font_size_pil = 10
        except IOError as e_font:
            logger.error(f"Pillow font IOError: {e_font}. Default.")
            self.font = ImageFont.load_default()
            self.font_size_pil = 10

        self.openai_api_key = None
        self.USE_AI_IMAGE_GENERATION = False
        self.dalle_model = "dall-e-3"
        self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)

        self.elevenlabs_api_key = None
        self.USE_ELEVENLABS = False
        self.elevenlabs_client = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
            self.elevenlabs_voice_settings = VoiceSettings(
                stability=0.60,
                similarity_boost=0.80,
                style=0.15,
                use_speaker_boost=True
            )
        else:
            self.elevenlabs_voice_settings = None

        self.pexels_api_key = None
        self.USE_PEXELS = False

        self.runway_api_key = None
        self.USE_RUNWAYML = False
        self.runway_client = None
        if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
            try:
                if os.getenv("RUNWAYML_API_SECRET"):
                    self.runway_client = RunwayMLAPIClient()
                    logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var.")
            except Exception as e_runway_init:
                logger.error(f"Failed to initialize RunwayML client during __init__: {e_runway_init}", exc_info=True)

        logger.info("VisualEngine initialized.")

    def set_openai_api_key(self, k):
        self.openai_api_key = k
        self.USE_AI_IMAGE_GENERATION = bool(k)
        logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")

    def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
        self.elevenlabs_api_key = api_key
        if voice_id_from_secret:
            self.elevenlabs_voice_id = voice_id_from_secret
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try:
                self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
                self.USE_ELEVENLABS = bool(self.elevenlabs_client)
                logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
            except Exception as e:
                logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True)
                self.USE_ELEVENLABS = False
        else:
            self.USE_ELEVENLABS = False
            logger.info("ElevenLabs Disabled (no key or SDK issue).")

    def set_pexels_api_key(self, k):
        self.pexels_api_key = k
        self.USE_PEXELS = bool(k)
        logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")

    def set_runway_api_key(self, k):
        self.runway_api_key = k
        if k:
            if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
                if not self.runway_client:
                    try:
                        if not os.getenv("RUNWAYML_API_SECRET"):
                            os.environ["RUNWAYML_API_SECRET"] = k
                            logger.info("Setting RUNWAYML_API_SECRET env var from provided key.")
                        self.runway_client = RunwayMLAPIClient()
                        self.USE_RUNWAYML = True
                        logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
                    except Exception as e_client_init:
                        logger.error(f"RunwayML Client init failed in set_runway_api_key: {e_client_init}", exc_info=True)
                        self.USE_RUNWAYML = False
                else:
                    self.USE_RUNWAYML = True
                    logger.info("RunwayML Client was already initialized.")
            else:
                logger.warning("RunwayML SDK not imported. API key set, but integration requires SDK.")
                self.USE_RUNWAYML = False
        else:
            self.USE_RUNWAYML = False
            logger.info("RunwayML Disabled (no API key).")

    def _image_to_data_uri(self, image_path):
        try:
            mime_type, _ = mimetypes.guess_type(image_path)
            if not mime_type:
                ext = os.path.splitext(image_path)[1].lower()
                if ext == ".png":
                    mime_type = "image/png"
                elif ext in [".jpg", ".jpeg"]:
                    mime_type = "image/jpeg"
                else:
                    mime_type = "application/octet-stream"
                    logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
            with open(image_path, "rb") as image_file:
                encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
            data_uri = f"data:{mime_type};base64,{encoded_string}"
            logger.debug(f"Data URI for {image_path} (first 100): {data_uri[:100]}")
            return data_uri
        except Exception as e:
            logger.error(f"Error converting {image_path} to data URI: {e}", exc_info=True)
            return None

    def _map_resolution_to_runway_ratio(self, width, height):
        ratio_str = f"{width}:{height}"
        supported_ratios = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
        if ratio_str in supported_ratios:
            return ratio_str
        logger.warning(f"Res {ratio_str} not directly Gen-4 supported. Default 1280:720.")
        return "1280:720"

    def _get_text_dimensions(self, text_content, font_obj):
        default_char_height = getattr(font_obj, 'size', self.font_size_pil)
        if not text_content:
            return 0, default_char_height
        try:
            if hasattr(font_obj, 'getbbox'):
                bbox = font_obj.getbbox(text_content)
                w = bbox[2] - bbox[0]
                h = bbox[3] - bbox[1]
                return w, h if h > 0 else default_char_height
            elif hasattr(font_obj, 'getsize'):
                w, h = font_obj.getsize(text_content)
                return w, h if h > 0 else default_char_height
            else:
                return int(len(text_content) * default_char_height * 0.6), int(default_char_height * 1.2)
        except Exception as e:
            logger.warning(f"Error in _get_text_dimensions: {e}")
            return int(len(text_content) * self.font_size_pil * 0.6), int(self.font_size_pil * 1.2)

    def _create_placeholder_image_content(self, text_description, filename, size=None):
        if size is None:
            size = self.video_frame_size
        img = Image.new('RGB', size, color=(20, 20, 40))
        d = ImageDraw.Draw(img)
        padding = 25
        max_w = size[0] - (2 * padding)
        lines = []
        if not text_description:
            text_description = "(Placeholder Image)"
        words = text_description.split()
        current_line = ""
        for word_idx, word in enumerate(words):
            prospective_line_addition = word + (" " if word_idx < len(words) - 1 else "")
            test_line = current_line + prospective_line_addition
            current_line_width, _ = self._get_text_dimensions(test_line, self.font)
            if current_line_width == 0 and test_line.strip():
                current_line_width = len(test_line) * (self.font_size_pil * 0.6)
            if current_line_width <= max_w:
                current_line = test_line
            else:
                if current_line.strip():
                    lines.append(current_line.strip())
                current_line = prospective_line_addition
        if current_line.strip():
            lines.append(current_line.strip())
        if not lines and text_description:
            avg_char_width, _ = self._get_text_dimensions("W", self.font)
            if avg_char_width == 0:
                avg_char_width = self.font_size_pil * 0.6
            chars_per_line = int(max_w / avg_char_width) if avg_char_width > 0 else 20
            lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
        elif not lines:
            lines.append("(Placeholder Error)")
        _, single_line_h = self._get_text_dimensions("Ay", self.font)
        single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
        max_lines_to_display = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
        if max_lines_to_display <= 0:
            max_lines_to_display = 1
        y_text_start = padding + (size[1] - (2 * padding) - max_lines_to_display * (single_line_h + 2)) / 2.0
        y_text = y_text_start
        for i in range(max_lines_to_display):
            line_content = lines[i]
            line_w, _ = self._get_text_dimensions(line_content, self.font)
            if line_w == 0 and line_content.strip():
                line_w = len(line_content) * (self.font_size_pil * 0.6)
            x_text = (size[0] - line_w) / 2.0
            try:
                d.text((x_text, y_text), line_content, font=self.font, fill=(200, 200, 180))
            except Exception as e_draw:
                logger.error(f"Pillow d.text error: {e_draw} for line '{line_content}'")
            y_text += single_line_h + 2
            if i == 6 and max_lines_to_display > 7:
                try:
                    d.text((x_text, y_text), "...", font=self.font, fill=(200, 200, 180))
                except Exception as e_ellipsis:
                    logger.error(f"Pillow d.text ellipsis error: {e_ellipsis}")
                break
        filepath = os.path.join(self.output_dir, filename)
        try:
            img.save(filepath)
            return filepath
        except Exception as e:
            logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True)
            return None

    def _search_pexels_image(self, query, output_filename_base):
        # <<< CORRECTED METHOD >>>
        if not self.USE_PEXELS or not self.pexels_api_key:
            return None
        headers = {"Authorization": self.pexels_api_key}
        params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
        pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg")\
                                             .replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
        filepath = os.path.join(self.output_dir, pexels_filename)
        try:
            logger.info(f"Pexels search: '{query}'")
            effective_query = " ".join(query.split()[:5])
            params["query"] = effective_query
            response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
            response.raise_for_status()
            data = response.json()
            if data.get("photos") and len(data["photos"]) > 0:
                photo_url = data["photos"][0]["src"]["large2x"]
                image_response = requests.get(photo_url, timeout=60)
                image_response.raise_for_status()
                img_data = Image.open(io.BytesIO(image_response.content))
                if img_data.mode != 'RGB':
                    img_data = img_data.convert('RGB')
                img_data.save(filepath)
                logger.info(f"Pexels image saved: {filepath}")
                return filepath
            else:
                logger.info(f"No photos found on Pexels for query: '{effective_query}'")
                return None
        except requests.exceptions.RequestException as e_req:
            logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True)
        except json.JSONDecodeError as e_json:
            logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True)
        except IOError as e_io:
            logger.error(f"Pexels image save error for query '{query}': {e_io}", exc_info=True)
        except Exception as e:
            logger.error(f"Unexpected Pexels error for query '{query}': {e}", exc_info=True)
        return None

    def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path,
                                           scene_identifier_filename_base, target_duration_seconds=5):
        if not self.USE_RUNWAYML or not self.runway_client:
            logger.warning("RunwayML not enabled/client not init. Skip video.")
            return None
        if not input_image_path or not os.path.exists(input_image_path):
            logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}")
            return None
        image_data_uri = self._image_to_data_uri(input_image_path)
        if not image_data_uri:
            return None
        runway_duration = 10 if target_duration_seconds > 7 else 5
        runway_ratio_str = self._map_resolution_to_runway_ratio(
            self.video_frame_size[0], self.video_frame_size[1]
        )
        output_video_filename = scene_identifier_filename_base.replace(
            ".png", f"_runway_gen4_d{runway_duration}s.mp4"
        )
        output_video_filepath = os.path.join(self.output_dir, output_video_filename)
        logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', "
                    f"img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
        try:
            task = self.runway_client.image_to_video.create(
                model='gen4_turbo',
                prompt_image=image_data_uri,
                prompt_text=text_prompt_for_motion,
                duration=runway_duration,
                ratio=runway_ratio_str
            )
            logger.info(f"Runway Gen-4 task ID: {task.id}. Polling...")
            poll_interval = 10
            max_polls = 36
            for _ in range(max_polls):
                time.sleep(poll_interval)
                task_details = self.runway_client.tasks.retrieve(id=task.id)
                logger.info(f"Runway task {task.id} status: {task_details.status}")
                if task_details.status == 'SUCCEEDED':
                    output_url = (
                        getattr(getattr(task_details, 'output', None), 'url', None)
                        or (
                            getattr(task_details, 'artifacts', None)
                            and task_details.artifacts[0].url
                            if task_details.artifacts and hasattr(task_details.artifacts[0], 'url')
                            else None
                        )
                        or (
                            getattr(task_details, 'artifacts', None)
                            and task_details.artifacts[0].download_url
                            if task_details.artifacts and hasattr(task_details.artifacts[0], 'download_url')
                            else None
                        )
                    )
                    if not output_url:
                        logger.error(
                            f"Runway task {task.id} SUCCEEDED, but no output URL in details: "
                            f"{vars(task_details) if hasattr(task_details, '__dict__') else task_details}"
                        )
                        return None
                    logger.info(f"Runway task {task.id} SUCCEEDED. Downloading from: {output_url}")
                    video_response = requests.get(output_url, stream=True, timeout=300)
                    video_response.raise_for_status()
                    with open(output_video_filepath, 'wb') as f:
                        for chunk in video_response.iter_content(chunk_size=8192):
                            f.write(chunk)
                    logger.info(f"Runway Gen-4 video saved: {output_video_filepath}")
                    return output_video_filepath
                elif task_details.status in ['FAILED', 'ABORTED']:
                    em = (
                        getattr(task_details, 'error_message', None)
                        or getattr(getattr(task_details, 'output', None), 'error', "Unknown error")
                    )
                    logger.error(f"Runway task {task.id} status: {task_details.status}. Error: {em}")
                    return None
            logger.warning(f"Runway task {task.id} timed out.")
            return None
        except AttributeError as ae:
            logger.error(f"RunwayML SDK AttributeError: {ae}. SDK/methods might differ.", exc_info=True)
            return None
        except Exception as e:
            logger.error(f"Runway Gen-4 API error: {e}", exc_info=True)
            return None

    def _create_placeholder_video_content(self, td, fn, dur=4, sz=None):
        if sz is None:
            sz = self.video_frame_size
        fp = os.path.join(self.output_dir, fn)
        tc = None
        try:
            tc = TextClip(
                td,
                fontsize=50,
                color='white',
                font=self.video_overlay_font,
                bg_color='black',
                size=sz,
                method='caption'
            ).set_duration(dur)
            tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
            logger.info(f"Generic placeholder video: {fp}")
            return fp
        except Exception as e:
            logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True)
            return None
        finally:
            if tc and hasattr(tc, 'close'):
                tc.close()

    def generate_scene_asset(
        self,
        image_generation_prompt_text,
        motion_prompt_text_for_video,
        scene_data,
        scene_identifier_filename_base,
        generate_as_video_clip=False,
        runway_target_duration=5
    ):
        base_name, _ = os.path.splitext(scene_identifier_filename_base)
        asset_info = {
            'path': None,
            'type': 'none',
            'error': True,
            'prompt_used': image_generation_prompt_text,
            'error_message': 'Asset generation init failed'
        }
        input_image_for_runway_path = None
        base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
        base_image_filepath = os.path.join(self.output_dir, base_image_filename)

        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_r = 2
            for att_n in range(max_r):
                try:
                    logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...")
                    cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
                    r = cl.images.generate(
                        model=self.dalle_model,
                        prompt=image_generation_prompt_text,
                        n=1,
                        size=self.image_size_dalle3,
                        quality="hd",
                        response_format="url",
                        style="vivid"
                    )
                    iu = r.data[0].url
                    rp = getattr(r.data[0], 'revised_prompt', None)
                    if rp:
                        logger.info(f"DALL-E revised: {rp[:70]}...")
                    ir = requests.get(iu, timeout=120)
                    ir.raise_for_status()
                    id_img = Image.open(io.BytesIO(ir.content))
                    if id_img.mode != 'RGB':
                        id_img = id_img.convert('RGB')
                    id_img.save(base_image_filepath)
                    logger.info(f"DALL-E base img saved: {base_image_filepath}")
                    input_image_for_runway_path = base_image_filepath
                    asset_info = {
                        'path': base_image_filepath,
                        'type': 'image',
                        'error': False,
                        'prompt_used': image_generation_prompt_text,
                        'revised_prompt': rp
                    }
                    break
                except openai.RateLimitError as e:
                    logger.warning(f"OpenAI RateLimit {att_n+1}:{e}. Retry...")
                    time.sleep(5 * (att_n + 1))
                    asset_info['error_message'] = str(e)
                except Exception as e:
                    logger.error(f"DALL-E base img error: {e}", exc_info=True)
                    asset_info['error_message'] = str(e)
                    break
            if asset_info['error']:
                logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")

        if asset_info['error'] and self.USE_PEXELS:
            logger.info("Trying Pexels for base img.")
            pqt = scene_data.get('pexels_search_query_๊ฐ๋…', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
            pp = self._search_pexels_image(pqt, base_image_filename)
            if pp:
                input_image_for_runway_path = pp
                asset_info = {
                    'path': pp,
                    'type': 'image',
                    'error': False,
                    'prompt_used': f"Pexels:{pqt}"
                }
            else:
                current_em = asset_info.get('error_message', "")
                asset_info['error_message'] = (current_em + " Pexels failed for base.").strip()

        if asset_info['error']:
            logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.")
            ppt = asset_info.get('prompt_used', image_generation_prompt_text)
            php = self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...", base_image_filename)
            if php:
                input_image_for_runway_path = php
                asset_info = {
                    'path': php,
                    'type': 'image',
                    'error': False,
                    'prompt_used': ppt
                }
            else:
                current_em = asset_info.get('error_message', "")
                asset_info['error_message'] = (current_em + " Base placeholder failed.").strip()

        if generate_as_video_clip:
            if not input_image_for_runway_path:
                logger.error("RunwayML video: base img failed.")
                asset_info['error'] = True
                asset_info['error_message'] = (asset_info.get('error_message', "") + " Base img miss, Runway abort.").strip()
                asset_info['type'] = 'none'
                return asset_info
            if self.USE_RUNWAYML:
                logger.info(f"Runway Gen-4 video for {base_name} using base: {input_image_for_runway_path}")
                video_path = self._generate_video_clip_with_runwayml(
                    motion_prompt_text_for_video,
                    input_image_for_runway_path,
                    base_name,
                    runway_target_duration
                )
                if video_path and os.path.exists(video_path):
                    asset_info = {
                        'path': video_path,
                        'type': 'video',
                        'error': False,
                        'prompt_used': motion_prompt_text_for_video,
                        'base_image_path': input_image_for_runway_path
                    }
                else:
                    logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.")
                    asset_info['error'] = True
                    asset_info['error_message'] = (
                        asset_info.get('error_message', "Base img ok.") +
                        " RunwayML video fail; use base img."
                    ).strip()
                    asset_info['path'] = input_image_for_runway_path
                    asset_info['type'] = 'image'
                    asset_info['prompt_used'] = image_generation_prompt_text
            else:
                logger.warning("RunwayML selected but disabled. Use base img.")
                asset_info['error'] = True
                asset_info['error_message'] = (
                    asset_info.get('error_message', "Base img ok.") +
                    " RunwayML disabled; use base img."
                ).strip()
                asset_info['path'] = input_image_for_runway_path
                asset_info['type'] = 'image'
                asset_info['prompt_used'] = image_generation_prompt_text

        return asset_info

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
            logger.info("11L skip.")
            return None

        afp = os.path.join(self.output_dir, output_filename)

        try:
            logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}...")
            asm = None

            # Determine which ElevenLabs streaming/non-streaming method to use
            if hasattr(self.elevenlabs_client, 'text_to_speech') and \
               hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
                asm = self.elevenlabs_client.text_to_speech.stream
                logger.info("Using 11L .text_to_speech.stream()")

            elif hasattr(self.elevenlabs_client, 'generate_stream'):
                asm = self.elevenlabs_client.generate_stream
                logger.info("Using 11L .generate_stream()")

            elif hasattr(self.elevenlabs_client, 'generate'):
                logger.info("Using 11L .generate()")
                if Voice and self.elevenlabs_voice_settings:
                    vp = Voice(
                        voice_id=str(self.elevenlabs_voice_id),
                        settings=self.elevenlabs_voice_settings
                    )
                else:
                    vp = str(self.elevenlabs_voice_id)

                ab = self.elevenlabs_client.generate(
                    text=text_to_narrate,
                    voice=vp,
                    model="eleven_multilingual_v2"
                )

                with open(afp, "wb") as f:
                    f.write(ab)

                logger.info(f"11L audio (non-stream): {afp}")
                return afp

            else:
                logger.error("No 11L audio method.")
                return None

            # If a streaming method is available:
            if asm:
                vps = {"voice_id": str(self.elevenlabs_voice_id)}
                if self.elevenlabs_voice_settings:
                    if hasattr(self.elevenlabs_voice_settings, 'model_dump'):
                        vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
                    elif hasattr(self.elevenlabs_voice_settings, 'dict'):
                        vps["voice_settings"] = self.elevenlabs_voice_settings.dict()
                    else:
                        vps["voice_settings"] = self.elevenlabs_voice_settings

                adi = asm(
                    text=text_to_narrate,
                    model_id="eleven_multilingual_v2",
                    **vps
                )

                with open(afp, "wb") as f:
                    for c in adi:
                        if c:
                            f.write(c)

                logger.info(f"11L audio (stream): {afp}")
                return afp

        except Exception as e:
            logger.error(f"11L audio error: {e}", exc_info=True)
            return None

    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        if not asset_data_list:
            logger.warning("No assets for animatic.")
            return None

        processed_clips = []
        narration_clip = None
        final_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")

        for i, asset_info in enumerate(asset_data_list):
            asset_path = asset_info.get('path')
            asset_type = asset_info.get('type')
            scene_dur = asset_info.get('duration', 4.5)
            scene_num = asset_info.get('scene_num', i + 1)
            key_action = asset_info.get('key_action', '')
            logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")

            if not (asset_path and os.path.exists(asset_path)):
                logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.")
                continue
            if scene_dur <= 0:
                logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.")
                continue

            current_scene_mvpy_clip = None
            try:
                if asset_type == 'image':
                    pil_img = Image.open(asset_path)
                    logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
                    img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
                    thumb = img_rgba.copy()
                    rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else Image.BILINEAR
                    thumb.thumbnail(self.video_frame_size, rf)

                    cv_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0))
                    xo = (self.video_frame_size[0] - thumb.width) // 2
                    yo = (self.video_frame_size[1] - thumb.height) // 2
                    cv_rgba.paste(thumb, (xo, yo), thumb)
                    final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0))
                    final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3])

                    dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png")
                    final_rgb_pil.save(dbg_path)
                    logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")

                    frame_np = np.array(final_rgb_pil, dtype=np.uint8)
                    if not frame_np.flags['C_CONTIGUOUS']:
                        frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8)
                    logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")

                    if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
                        logger.error(f"S{scene_num}: Invalid NumPy. Skip.")
                        continue

                    clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur)
                    mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
                    clip_base.save_frame(mvpy_dbg_path, t=0.1)
                    logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")

                    clip_fx = clip_base
                    try:
                        es = random.uniform(1.03, 1.08)
                        clip_fx = clip_base.fx(
                            vfx.resize,
                            lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1
                        ).set_position('center')
                    except Exception as e:
                        logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False)

                    current_scene_mvpy_clip = clip_fx

                elif asset_type == 'video':
                    src_clip = None
                    try:
                        src_clip = VideoFileClip(
                            asset_path,
                            target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None,
                            audio=False
                        )
                        tmp_clip = src_clip
                        if src_clip.duration != scene_dur:
                            if src_clip.duration > scene_dur:
                                tmp_clip = src_clip.subclip(0, scene_dur)
                            else:
                                if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1:
                                    tmp_clip = src_clip.loop(duration=scene_dur)
                                else:
                                    tmp_clip = src_clip.set_duration(src_clip.duration)
                                    logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
                        current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur)
                        if current_scene_mvpy_clip.size != list(self.video_frame_size):
                            current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size)
                    except Exception as e:
                        logger.error(f"S{scene_num} Video load error '{asset_path}': {e}", exc_info=True)
                        continue
                    finally:
                        if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, 'close'):
                            src_clip.close()
                else:
                    logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.")
                    continue

                if current_scene_mvpy_clip and key_action:
                    try:
                        to_dur = min(current_scene_mvpy_clip.duration - 0.5,
                                     current_scene_mvpy_clip.duration * 0.8) if current_scene_mvpy_clip.duration > 0.5 else current_scene_mvpy_clip.duration
                        to_start = 0.25
                        if to_dur > 0:
                            txt_c = TextClip(
                                f"Scene {scene_num}\n{key_action}",
                                fontsize=self.video_overlay_font_size,
                                color=self.video_overlay_font_color,
                                font=self.video_overlay_font,
                                bg_color='rgba(10,10,20,0.7)',
                                method='caption',
                                align='West',
                                size=(self.video_frame_size[0] * 0.9, None),
                                kerning=-1,
                                stroke_color='black',
                                stroke_width=1.5
                            ).set_duration(to_dur).set_start(to_start).set_position(('center', 0.92), relative=True)
                            current_scene_mvpy_clip = CompositeVideoClip(
                                [current_scene_mvpy_clip, txt_c],
                                size=self.video_frame_size,
                                use_bgclip=True
                            )
                        else:
                            logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
                    except Exception as e:
                        logger.error(f"S{scene_num} TextClip error: {e}. No text.", exc_info=True)

                if current_scene_mvpy_clip:
                    processed_clips.append(current_scene_mvpy_clip)
                    logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
            except Exception as e:
                logger.error(f"MAJOR Error S{scene_num} ({asset_path}): {e}", exc_info=True)
            finally:
                if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, 'close'):
                    try:
                        current_scene_mvpy_clip.close()
                    except Exception:
                        pass

        if not processed_clips:
            logger.warning("No clips processed. Abort.")
            return None

        td = 0.75
        try:
            logger.info(f"Concatenating {len(processed_clips)} clips.")
            if len(processed_clips) > 1:
                final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose")
            elif processed_clips:
                final_clip = processed_clips[0]
            if not final_clip:
                logger.error("Concatenation failed.")
                return None
            logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
            if td > 0 and final_clip.duration > 0:
                if final_clip.duration > td * 2:
                    final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td)
                else:
                    final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0))
            if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0:
                try:
                    narration_clip = AudioFileClip(overall_narration_path)
                    final_clip = final_clip.set_audio(narration_clip)
                    logger.info("Narration added.")
                except Exception as e:
                    logger.error(f"Narration add error: {e}", exc_info=True)
            elif final_clip.duration <= 0:
                logger.warning("Video no duration. No audio.")
            if final_clip and final_clip.duration > 0:
                op = os.path.join(self.output_dir, output_filename)
                logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
                final_clip.write_videofile(
                    op,
                    fps=fps,
                    codec='libx264',
                    preset='medium',
                    audio_codec='aac',
                    temp_audiofile=os.path.join(
                        self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'
                    ),
                    remove_temp=True,
                    threads=os.cpu_count() or 2,
                    logger='bar',
                    bitrate="5000k",
                    ffmpeg_params=["-pix_fmt", "yuv420p"]
                )
                logger.info(f"Video created:{op}")
                return op
            else:
                logger.error("Final clip invalid. No write.")
                return None
        except Exception as e:
            logger.error(f"Video write error: {e}", exc_info=True)
            return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
            all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
            for clip_obj_to_close in all_clips_to_close:
                if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
                    try:
                        clip_obj_to_close.close()
                    except Exception as e_close:
                        logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}")