File size: 16,312 Bytes
287c9ca 9d84ba9 8583908 9840152 9d84ba9 990e23e 287c9ca 8583908 9840152 5470dfc 287c9ca 9d84ba9 41b47a8 287c9ca 50c620f 09d5c67 41b47a8 9840152 8583908 9840152 8583908 41b47a8 9840152 41b47a8 9840152 5470dfc 9840152 09d5c67 9840152 09d5c67 9840152 b97795f 9840152 9d84ba9 50c620f 9840152 41b47a8 9840152 41b47a8 9840152 9d84ba9 9840152 9d84ba9 9840152 9d84ba9 9840152 b97795f 9840152 41b47a8 09d5c67 9d84ba9 9840152 9d84ba9 9840152 9d84ba9 9840152 9d84ba9 9840152 9d84ba9 9840152 990e23e 9840152 09d5c67 9840152 990e23e 8583908 9840152 8583908 09d5c67 41b47a8 9840152 9d84ba9 8583908 9840152 8583908 9d84ba9 8583908 9d84ba9 8583908 9d84ba9 8583908 9840152 9d84ba9 9840152 9d84ba9 9840152 9d84ba9 9840152 8583908 b97795f 9840152 9d84ba9 9840152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
from elevenlabs import generate as elevenlabs_generate_audio, set_api_key as elevenlabs_set_api_key_func
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "arial.ttf"
self.font_path_in_container = f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
self.font_size_pil = 20
self.video_overlay_font_size = 30 # Slightly smaller for more text with narration
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'Arial-Bold'
try:
self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil)
print(f"Font for placeholders: {self.font_path_in_container}.")
except IOError:
print(f"Warning: Placeholder font '{self.font_path_in_container}' not loaded. Using default.")
self.font = ImageFont.load_default(); self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
self.elevenlabs_voice_id = "Rachel" # Default, can be made configurable
self.pexels_api_key = None; self.USE_PEXELS = False
def set_openai_api_key(self, api_key):
if api_key: self.openai_api_key = api_key; self.USE_AI_IMAGE_GENERATION = True; print(f"DALL-E ({self.dalle_model}) Ready.")
else: self.USE_AI_IMAGE_GENERATION = False; print("DALL-E Disabled.")
def set_elevenlabs_api_key(self, api_key):
if api_key:
self.elevenlabs_api_key = api_key
try:
elevenlabs_set_api_key_func(api_key) # Set for the elevenlabs library
self.USE_ELEVENLABS = True
print("ElevenLabs Ready.")
except Exception as e:
print(f"Error setting ElevenLabs API key for library: {e}. ElevenLabs disabled.")
self.USE_ELEVENLABS = False
else: self.USE_ELEVENLABS = False; print("ElevenLabs Disabled.")
def set_pexels_api_key(self, api_key):
if api_key: self.pexels_api_key = api_key; self.USE_PEXELS = True; print("Pexels Ready.")
else: self.USE_PEXELS = False; print("Pexels Disabled.")
def _get_text_dimensions(self, text_content, font_obj): # Remains same
if not text_content: return 0, self.font_size_pil
try:
if hasattr(font_obj, 'getbbox'): bbox = font_obj.getbbox(text_content); w = bbox[2]-bbox[0]; h = bbox[3]-bbox[1]; return w, h if h>0 else self.font_size_pil
elif hasattr(font_obj, 'getsize'): w,h = font_obj.getsize(text_content); return w, h if h>0 else self.font_size_pil
else: return int(len(text_content)*self.font_size_pil*0.6), int(self.font_size_pil*1.2 if self.font_size_pil*1.2 > 0 else self.font_size_pil)
except: return int(len(text_content)*self.font_size_pil*0.6), int(self.font_size_pil*1.2)
def _create_placeholder_image_content(self, text_description, filename, size=(1280, 720)): # Remains same
img = Image.new('RGB', size, color=(20,20,40)); draw = ImageDraw.Draw(img); padding = 25; max_w = size[0]-(2*padding); lines = []
if not text_description: text_description = "(Placeholder)"
words = text_description.split(); current_line = ""
for word in words:
test_line = current_line + word + " ";
if self._get_text_dimensions(test_line, self.font)[0] <= max_w: current_line = test_line
else:
if current_line: lines.append(current_line.strip())
current_line = word + " "
if current_line: lines.append(current_line.strip())
if not lines: lines.append("(Text err)")
_, line_h = self._get_text_dimensions("Ay", self.font); line_h = line_h if line_h>0 else self.font_size_pil+2
max_lines = min(len(lines), (size[1]-2*padding)//(line_h+2))
y = padding + (size[1]-2*padding - max_lines*(line_h+2))/2.0
for i in range(max_lines):
line = lines[i]; line_w, _ = self._get_text_dimensions(line, self.font); x = (size[0]-line_w)/2.0
draw.text((x,y), line, font=self.font, fill=(200,200,180)); y += line_h+2
if i==6 and max_lines>7: draw.text((x,y), "...", font=self.font, fill=(200,200,180)); break
fp = os.path.join(self.output_dir, filename);
try: img.save(fp); return fp
except Exception as e: print(f"Err placeholder save: {e}"); return None
def _search_pexels_image(self, query, output_filename):
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
# Ensure JPG for pexels typical format, but DALL-E images are PNG. Filename will be distinct.
pexels_filename = output_filename.replace(".png", "_pexels.jpg")
filepath = os.path.join(self.output_dir, pexels_filename)
try:
print(f"Searching Pexels for: '{query}' (max 3 words for relevance)")
# Limit query length for Pexels to improve relevance
query_parts = query.split()
effective_query = " ".join(query_parts[:5]) # Use first 5 words
params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=15)
response.raise_for_status()
data = response.json()
if data.get("photos"):
photo_url = data["photos"][0]["src"]["large2x"]
image_response = requests.get(photo_url, timeout=45)
image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath)
print(f"Pexels image saved: {filepath}")
return filepath
else:
print(f"No photos found on Pexels for query: '{effective_query}'")
except Exception as e: print(f"Pexels search/download error for '{query}': {e}")
return None
def generate_image_visual(self, image_prompt_text, scene_data_for_fallbacks, scene_identifier_filename):
filepath = os.path.join(self.output_dir, scene_identifier_filename)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_retries = 2
for attempt in range(max_retries):
try:
print(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:120]}...")
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0) # Increased client timeout
response = client.images.generate(
model=self.dalle_model, prompt=image_prompt_text, n=1,
size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid"
)
image_url = response.data[0].url
revised_prompt = getattr(response.data[0], 'revised_prompt', None)
if revised_prompt: print(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
image_response = requests.get(image_url, timeout=120) # Increased download timeout
image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); print(f"AI Image (DALL-E) saved: {filepath}"); return filepath
except openai.RateLimitError as e:
print(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s...")
time.sleep(5*(attempt+1));
if attempt == max_retries -1: print("Max retries for RateLimitError."); break # Break from loop
else: continue # Go to next attempt
except openai.APIError as e: print(f"OpenAI API Error: {e}"); break
except requests.exceptions.RequestException as e: print(f"Requests Error (DALL-E download): {e}"); break
except Exception as e: print(f"Generic error (DALL-E gen): {e}"); break
print("DALL-E generation failed. Trying Pexels fallback...")
pexels_query = f"{scene_data_for_fallbacks.get('emotional_beat','')} {scene_data_for_fallbacks.get('setting_description','')} {scene_data_for_fallbacks.get('genre','')} {scene_data_for_fallbacks.get('mood','')}"
pexels_path = self._search_pexels_image(pexels_query, scene_identifier_filename)
if pexels_path: return pexels_path
print("Pexels also failed/disabled. Using placeholder.")
return self._create_placeholder_image_content(
f"[AI/Pexels Failed] Original Prompt: {image_prompt_text[:100]}...",
scene_identifier_filename, size=self.video_frame_size
)
else: # AI image generation not enabled
return self._create_placeholder_image_content(
image_prompt_text, scene_identifier_filename, size=self.video_frame_size
)
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_api_key or not text_to_narrate:
print("ElevenLabs not enabled, API key missing, or no text provided. Skipping audio generation.")
return None
audio_filepath = os.path.join(self.output_dir, output_filename)
try:
print(f"Generating ElevenLabs audio (Voice: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
# Ensure API key is set for the elevenlabs library context if it's not global
# elevenlabs_set_api_key_func(self.elevenlabs_api_key) # Usually set once globally is enough
audio_data = elevenlabs_generate_audio(
text=text_to_narrate,
voice=self.elevenlabs_voice_id,
model="eleven_multilingual_v2" # Or other suitable model like "eleven_turbo_v2"
)
with open(audio_filepath, "wb") as f:
f.write(audio_data)
print(f"ElevenLabs audio saved: {audio_filepath}")
return audio_filepath
except ImportError:
print("ElevenLabs library not installed. Cannot generate audio.")
except Exception as e:
print(f"Error generating ElevenLabs audio: {e}")
return None
def create_video_from_images(self, image_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24, duration_per_image=4):
if not image_data_list: return None
print(f"Creating video from {len(image_data_list)} image sets.")
processed_clips = []
narration_audio_clip = None # Initialize
final_video_clip_obj = None # Initialize
for i, data in enumerate(image_data_list):
img_path, scene_num, key_action = data.get('path'), data.get('scene_num', i+1), data.get('key_action', '')
if not (img_path and os.path.exists(img_path)):
print(f"Image not found: {img_path}. Skipping."); continue
try:
pil_img_orig = Image.open(img_path)
if pil_img_orig.mode != 'RGB': pil_img_orig = pil_img_orig.convert('RGB')
img_for_frame = pil_img_orig.copy()
img_for_frame.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS)
canvas = Image.new('RGB', self.video_frame_size, (0,0,0))
x_offset = (self.video_frame_size[0] - img_for_frame.width) // 2
y_offset = (self.video_frame_size[1] - img_for_frame.height) // 2
canvas.paste(img_for_frame, (x_offset, y_offset))
frame_np = np.array(canvas)
img_clip = ImageClip(frame_np).set_duration(duration_per_image)
img_clip = img_clip.fx(vfx.resize, lambda t: 1 + 0.1 * (t / duration_per_image)).set_position('center')
if key_action:
overlay_text = f"Scene {scene_num}\n{key_action}"
txt_clip = TextClip(overlay_text, fontsize=self.video_overlay_font_size,
color=self.video_overlay_font_color, font=self.video_overlay_font,
bg_color='rgba(0,0,0,0.7)', method='caption', align='West',
size=(self.video_frame_size[0]*0.85, None), kerning=-1, stroke_color='black', stroke_width=0.5
).set_duration(duration_per_image - 1.0).set_start(0.5).set_position(('center', 0.88), relative=True)
final_scene_clip = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size)
else: final_scene_clip = img_clip
processed_clips.append(final_scene_clip)
except Exception as e: print(f"Error processing clip for {img_path}: {e}. Skipping.")
if not processed_clips: print("No clips processed for video."); return None
video_wo_audio = concatenate_videoclips(processed_clips, padding=-0.75, method="compose")
if video_wo_audio.duration > 1.5:
video_wo_audio = video_wo_audio.fx(vfx.fadein, 0.75).fx(vfx.fadeout, 0.75)
final_video_clip_obj = video_wo_audio
if overall_narration_path and os.path.exists(overall_narration_path):
try:
narration_audio_clip = AudioFileClip(overall_narration_path)
final_video_clip_obj = final_video_clip_obj.set_audio(narration_audio_clip)
if narration_audio_clip.duration < final_video_clip_obj.duration:
final_video_clip_obj = final_video_clip_obj.subclip(0, narration_audio_clip.duration)
elif narration_audio_clip.duration > final_video_clip_obj.duration:
# If audio is longer, we might want to loop video or extend last frame - complex.
# For now, video duration dictates. Audio will be cut.
# Or, ensure narration script length matches expected video length.
pass # Moviepy will cut audio to video duration by default with set_audio
print("Overall narration added to video.")
except Exception as e:
print(f"Error adding overall narration: {e}. Proceeding without main narration.")
output_path = os.path.join(self.output_dir, output_filename)
try:
final_video_clip_obj.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True, threads=os.cpu_count() or 2, logger='bar')
print(f"Video created: {output_path}"); return output_path
except Exception as e: print(f"Error writing video file: {e}"); return None
finally: # Ensure clips are closed
for clip_item in processed_clips:
if hasattr(clip_item, 'close'): clip_item.close()
if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
if final_video_clip_obj and hasattr(final_video_clip_obj, 'close'): final_video_clip_obj.close() |