File size: 42,312 Bytes
e22eb13
e0b9b11
bf873b0
 
62838f2
 
bf873b0
62838f2
 
 
 
 
b1b7840
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22eb13
bf873b0
e22eb13
bf873b0
d1bb1cc
bf873b0
 
 
f13d4b2
5089920
f13d4b2
d1bb1cc
 
 
 
bf873b0
 
 
 
 
b1b7840
d1bb1cc
bf873b0
5089920
bf873b0
 
 
 
d1bb1cc
bf873b0
 
 
4c2220b
f13d4b2
287c9ca
bf873b0
 
 
 
 
 
 
62838f2
e0b9b11
 
bf873b0
 
 
 
 
 
 
 
 
 
7b5fcd5
bf873b0
55ef0ff
bf873b0
 
 
 
 
 
 
200c5c4
09d5c67
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1bb1cc
bf873b0
 
 
 
 
 
 
 
 
d1bb1cc
bf873b0
 
 
 
 
d1bb1cc
bf873b0
 
 
 
d1bb1cc
bf873b0
 
 
 
55ef0ff
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
7b5fcd5
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1bb1cc
bf873b0
 
 
 
 
 
 
 
62838f2
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b5fcd5
bf873b0
 
 
 
 
 
 
 
 
 
 
b1b7840
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b5fcd5
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
7b5fcd5
bf873b0
 
 
 
7b5fcd5
bf873b0
 
 
 
 
 
 
 
7b5fcd5
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b5fcd5
bf873b0
 
 
 
7b5fcd5
bf873b0
7b5fcd5
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
7b5fcd5
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
b1b7840
7b5fcd5
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
8583908
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3313da9
bf873b0
 
 
 
cb93f9c
bf873b0
 
 
 
 
59af6e7
bf873b0
 
 
59af6e7
bf873b0
 
 
 
 
 
 
 
cb93f9c
bf873b0
 
 
 
 
b97795f
bf873b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754c854
bf873b0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64
import mimetypes
import numpy as np
import os
import openai # Ensure this is OpenAI v1.x.x+
import requests
import io
import time
import random
import logging

# --- MoviePy Imports ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx

# --- MONKEY PATCH for Pillow/MoviePy compatibility ---
try:
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'): # Pillow 8
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'):
             print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different.")
except Exception as e_monkey_patch:
    print(f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}")

logger = logging.getLogger(__name__)
# logger.setLevel(logging.DEBUG) # Uncomment for verbose debugging

# --- External Service Client Imports ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None 
Voice = None              
VoiceSettings = None      
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient
    Voice = ImportedVoice
    VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True
    logger.info("ElevenLabs client components (SDK v1.x.x pattern) imported successfully.")
except ImportError:
    logger.warning("ElevenLabs SDK not found (expected 'pip install elevenlabs>=1.0.0'). Audio generation will be disabled.")
except Exception as e_eleven_import_general:
    logger.warning(f"General error importing ElevenLabs client components: {e_eleven_import_general}. Audio generation disabled.")

RUNWAYML_SDK_IMPORTED = False
RunwayMLAPIClientClass = None 
try:
    from runwayml import RunwayML as ImportedRunwayMLAPIClientClass
    RunwayMLAPIClientClass = ImportedRunwayMLAPIClientClass
    RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK (runwayml) imported successfully.")
except ImportError:
    logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk_import_general:
    logger.warning(f"General error importing RunwayML SDK: {e_runway_sdk_import_general}. RunwayML features disabled.")


class VisualEngine:
    DEFAULT_FONT_SIZE_PIL = 10
    PREFERRED_FONT_SIZE_PIL = 20
    VIDEO_OVERLAY_FONT_SIZE = 30
    VIDEO_OVERLAY_FONT_COLOR = 'white'
    DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'
    PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold'

    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        self.font_filename_pil_preference = "DejaVuSans-Bold.ttf"
        font_paths_to_try = [ self.font_filename_pil_preference, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil_preference}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
        self.resolved_font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
        self.active_font_pil = ImageFont.load_default(); self.active_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
        self.active_moviepy_font_name = self.DEFAULT_MOVIEPY_FONT
        if self.resolved_font_path_pil:
            try: self.active_font_pil = ImageFont.truetype(self.resolved_font_path_pil, self.PREFERRED_FONT_SIZE_PIL); self.active_font_size_pil = self.PREFERRED_FONT_SIZE_PIL; logger.info(f"Pillow font: {self.resolved_font_path_pil} sz {self.active_font_size_pil}."); self.active_moviepy_font_name = 'DejaVu-Sans-Bold' if "dejavu" in self.resolved_font_path_pil.lower() else ('Liberation-Sans-Bold' if "liberation" in self.resolved_font_path_pil.lower() else self.DEFAULT_MOVIEPY_FONT)
            except IOError as e_font_load_io: logger.error(f"Pillow font IOError '{self.resolved_font_path_pil}': {e_font_load_io}. Default.")
        else: logger.warning("Preferred Pillow font not found. Default.")
        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)
        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client_instance = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings_obj = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings_obj = None
        self.pexels_api_key = None; self.USE_PEXELS = False
        self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None
        if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass and os.getenv("RUNWAYML_API_SECRET"):
            try: self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.")
            except Exception as e_runway_init_startup: logger.error(f"Initial RunwayML client init failed: {e_runway_init_startup}"); self.USE_RUNWAYML = False
        logger.info("VisualEngine initialized.")

    def set_openai_api_key(self, api_key_value): self.openai_api_key = api_key_value; self.USE_AI_IMAGE_GENERATION = bool(api_key_value); logger.info(f"DALL-E status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
    def set_elevenlabs_api_key(self, api_key_value, voice_id_from_secret=None):
        self.elevenlabs_api_key = api_key_value
        if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
        if api_key_value and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try: self.elevenlabs_client_instance = ElevenLabsAPIClient(api_key=api_key_value); self.USE_ELEVENLABS = bool(self.elevenlabs_client_instance); logger.info(f"11L Client: {'Ready' if self.USE_ELEVENLABS else 'Failed'} (Voice: {self.elevenlabs_voice_id})")
            except Exception as e_11l_setkey_init: logger.error(f"11L client init error: {e_11l_setkey_init}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False; self.elevenlabs_client_instance=None
        else: self.USE_ELEVENLABS = False; logger.info(f"11L Disabled (key/SDK).")
    def set_pexels_api_key(self, api_key_value): self.pexels_api_key = api_key_value; self.USE_PEXELS = bool(api_key_value); logger.info(f"Pexels status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
    def set_runway_api_key(self, api_key_value):
        self.runway_api_key = api_key_value
        if api_key_value:
            if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass:
                if not self.runway_ml_sdk_client_instance:
                    try:
                        original_env_secret = os.getenv("RUNWAYML_API_SECRET")
                        if not original_env_secret: os.environ["RUNWAYML_API_SECRET"] = api_key_value; logger.info("Temp set RUNWAYML_API_SECRET for SDK.")
                        self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init via set_runway_api_key.")
                        if not original_env_secret: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temp RUNWAYML_API_SECRET.")
                    except Exception as e_runway_setkey_init: logger.error(f"RunwayML Client init in set_runway_api_key fail: {e_runway_setkey_init}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_sdk_client_instance=None
                else: self.USE_RUNWAYML = True; logger.info("RunwayML Client already init.")
            else: logger.warning("RunwayML SDK not imported. Service disabled."); self.USE_RUNWAYML = False
        else: self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None; logger.info("RunwayML Disabled (no API key).")

    def _image_to_data_uri(self, image_path):
        # (Implementation from before)
        try: mime_type,_=mimetypes.guess_type(image_path)
        if not mime_type:ext=os.path.splitext(image_path)[1].lower();mime_map={".png":"image/png",".jpg":"image/jpeg",".jpeg":"image/jpeg",".webp":"image/webp"};mime_type=mime_map.get(ext,"application/octet-stream");
        if mime_type=="application/octet-stream":logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
        with open(image_path,"rb")as image_file:encoded_string=base64.b64encode(image_file.read()).decode('utf-8')
        data_uri=f"data:{mime_type};base64,{encoded_string}";logger.debug(f"Data URI for {os.path.basename(image_path)} (start): {data_uri[:100]}...");return data_uri
        except FileNotFoundError:logger.error(f"Img not found {image_path} for data URI.");return None
        except Exception as e:logger.error(f"Error converting {image_path} to data URI:{e}",exc_info=True);return None

    def _map_resolution_to_runway_ratio(self, width, height):
        # (Implementation from before)
        ratio_str=f"{width}:{height}";supported_ratios_gen4=["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"];
        if ratio_str in supported_ratios_gen4:return ratio_str
        logger.warning(f"Res {ratio_str} not in Gen-4 list. Default 1280:720.");return "1280:720"

    def _get_text_dimensions(self, text_content, font_object_pil):
        # (Implementation from before)
        dch=getattr(font_object_pil,'size',self.active_font_size_pil);
        if not text_content:return 0,dch
        try:
            if hasattr(font_object_pil,'getbbox'):bb=font_object_pil.getbbox(text_content);w=bb[2]-bb[0];h=bb[3]-bb[1];return w,h if h>0 else dch
            elif hasattr(font_object_pil,'getsize'):w,h=font_object_pil.getsize(text_content);return w,h if h>0 else dch
            else:return int(len(text_content)*dch*0.6),int(dch*1.2)
        except Exception as e_getdim_inner:logger.warning(f"Error in _get_text_dimensions:{e_getdim_inner}");return int(len(text_content)*self.active_font_size_pil*0.6),int(self.active_font_size_pil*1.2) # Renamed e

    def _create_placeholder_image_content(self,text_description,filename,size=None):
        # (Corrected version from previous response)
        if size is None: size = self.video_frame_size
        img = Image.new('RGB', size, color=(20, 20, 40)); d = ImageDraw.Draw(img); padding = 25
        max_w = size[0] - (2 * padding); lines_for_placeholder = []
        if not text_description: text_description = "(Placeholder Image)"
        words_list = text_description.split(); current_line_buffer = ""
        for word_idx, word_item in enumerate(words_list):
            prospective_addition = word_item + (" " if word_idx < len(words_list) - 1 else "")
            test_line_candidate = current_line_buffer + prospective_addition
            current_w_text, _ = self._get_text_dimensions(test_line_candidate, self.active_font_pil)
            if current_w_text == 0 and test_line_candidate.strip(): current_w_text = len(test_line_candidate) * (self.active_font_size_pil * 0.6)
            if current_w_text <= max_w: current_line_buffer = test_line_candidate
            else:
                if current_line_buffer.strip(): lines_for_placeholder.append(current_line_buffer.strip())
                current_line_buffer = prospective_addition
        if current_line_buffer.strip(): lines_for_placeholder.append(current_line_buffer.strip())
        if not lines_for_placeholder and text_description:
            avg_char_w_est, _ = self._get_text_dimensions("W", self.active_font_pil); avg_char_w_est = avg_char_w_est or (self.active_font_size_pil * 0.6)
            chars_per_line_est = int(max_w / avg_char_w_est) if avg_char_w_est > 0 else 20
            lines_for_placeholder.append(text_description[:chars_per_line_est] + ("..." if len(text_description) > chars_per_line_est else ""))
        elif not lines_for_placeholder: lines_for_placeholder.append("(Placeholder Error)")
        _, single_h = self._get_text_dimensions("Ay", self.active_font_pil); single_h = single_h if single_h > 0 else self.active_font_size_pil + 2
        max_l = min(len(lines_for_placeholder), (size[1] - (2 * padding)) // (single_h + 2)) if single_h > 0 else 1; max_l = max(1, max_l)
        y_p = padding + (size[1] - (2 * padding) - max_l * (single_h + 2)) / 2.0
        for i_line in range(max_l):
            line_txt_content = lines_for_placeholder[i_line]; line_w_val, _ = self._get_text_dimensions(line_txt_content, self.active_font_pil)
            if line_w_val == 0 and line_txt_content.strip(): line_w_val = len(line_txt_content) * (self.active_font_size_pil * 0.6)
            x_p = (size[0] - line_w_val) / 2.0
            try: d.text((x_p, y_p), line_txt_content, font=self.active_font_pil, fill=(200, 200, 180))
            except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for '{line_txt_content}'")
            y_p += single_h + 2
            if i_line == 6 and max_l > 7:
                try: d.text((x_p, y_p), "...", font=self.active_font_pil, fill=(200, 200, 180))
                except Exception as e_elip: logger.error(f"Pillow d.text ellipsis error: {e_elip}"); break
        filepath_placeholder = os.path.join(self.output_dir, filename)
        try: img.save(filepath_placeholder); return filepath_placeholder
        except Exception as e_save: logger.error(f"Saving placeholder image '{filepath_placeholder}' error: {e_save}", exc_info=True); return None

    def _search_pexels_image(self, query_str, output_fn_base):
        # (Corrected version from previous response)
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        http_headers = {"Authorization": self.pexels_api_key}
        http_params = {"query": query_str, "per_page": 1, "orientation": "landscape", "size": "large2x"}
        base_name_px, _ = os.path.splitext(output_fn_base)
        pexels_fn_str = base_name_px + f"_pexels_{random.randint(1000,9999)}.jpg"
        file_path_px = os.path.join(self.output_dir, pexels_fn_str)
        try:
            logger.info(f"Pexels: Searching for '{query_str}'")
            eff_query_px = " ".join(query_str.split()[:5])
            http_params["query"] = eff_query_px
            response_px = requests.get("https://api.pexels.com/v1/search", headers=http_headers, params=http_params, timeout=20)
            response_px.raise_for_status()
            data_px = response_px.json()
            if data_px.get("photos") and len(data_px["photos"]) > 0:
                photo_details_px = data_px["photos"][0]
                photo_url_px = photo_details_px.get("src", {}).get("large2x")
                if not photo_url_px: logger.warning(f"Pexels: 'large2x' URL missing for '{eff_query_px}'. Details: {photo_details_px}"); return None
                image_response_px = requests.get(photo_url_px, timeout=60); image_response_px.raise_for_status()
                img_pil_data_px = Image.open(io.BytesIO(image_response_px.content))
                if img_pil_data_px.mode != 'RGB': img_pil_data_px = img_pil_data_px.convert('RGB')
                img_pil_data_px.save(file_path_px); logger.info(f"Pexels: Image saved to {file_path_px}"); return file_path_px
            else: logger.info(f"Pexels: No photos for '{eff_query_px}'."); return None
        except requests.exceptions.RequestException as e_req_px: logger.error(f"Pexels: RequestException for '{query_str}': {e_req_px}", exc_info=False); return None
        except Exception as e_px_gen: logger.error(f"Pexels: General error for '{query_str}': {e_px_gen}", exc_info=True); return None

    def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
        # (Updated RunwayML integration from before)
        if not self.USE_RUNWAYML or not self.runway_ml_sdk_client_instance: logger.warning("RunwayML not enabled/client not init. Skip video."); return None
        if not input_image_path or not os.path.exists(input_image_path): logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}"); return None
        image_data_uri_str = self._image_to_data_uri(input_image_path)
        if not image_data_uri_str: return None
        runway_dur = 10 if target_duration_seconds >= 8 else 5
        runway_ratio = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
        base_name_for_runway_vid, _ = os.path.splitext(scene_identifier_filename_base); output_vid_fn = base_name_for_runway_vid + f"_runway_gen4_d{runway_dur}s.mp4"
        output_vid_fp = os.path.join(self.output_dir, output_vid_fn)
        logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', img='{os.path.basename(input_image_path)}', dur={runway_dur}s, ratio='{runway_ratio}'")
        try:
            task_submitted_runway = self.runway_ml_sdk_client_instance.image_to_video.create(model='gen4_turbo', prompt_image=image_data_uri_str, prompt_text=text_prompt_for_motion, duration=runway_dur, ratio=runway_ratio)
            task_id_runway = task_submitted_runway.id; logger.info(f"Runway Gen-4 task ID: {task_id_runway}. Polling...")
            poll_sec=10; max_poll_count=36; poll_start_time = time.time()
            while time.time() - poll_start_time < max_poll_count * poll_sec:
                time.sleep(poll_sec); task_details_runway = self.runway_ml_sdk_client_instance.tasks.retrieve(id=task_id_runway)
                logger.info(f"Runway task {task_id_runway} status: {task_details_runway.status}")
                if task_details_runway.status == 'SUCCEEDED':
                    output_url_runway = getattr(getattr(task_details_runway,'output',None),'url',None) or \
                                        (getattr(task_details_runway,'artifacts',None) and task_details_runway.artifacts[0].url if task_details_runway.artifacts and hasattr(task_details_runway.artifacts[0],'url') else None) or \
                                        (getattr(task_details_runway,'artifacts',None) and task_details_runway.artifacts[0].download_url if task_details_runway.artifacts and hasattr(task_details_runway.artifacts[0],'download_url') else None)
                    if not output_url_runway: logger.error(f"Runway task {task_id_runway} SUCCEEDED, but no output URL. Details: {vars(task_details_runway) if hasattr(task_details_runway,'__dict__') else task_details_runway}"); return None
                    logger.info(f"Runway task {task_id_runway} SUCCEEDED. Downloading: {output_url_runway}")
                    video_resp_get = requests.get(output_url_runway, stream=True, timeout=300); video_resp_get.raise_for_status()
                    with open(output_vid_fp,'wb') as f_vid:
                        for chunk_data in video_resp_get.iter_content(chunk_size=8192): f_vid.write(chunk_data)
                    logger.info(f"Runway Gen-4 video saved: {output_vid_fp}"); return output_vid_fp
                elif task_details_runway.status in ['FAILED','ABORTED','ERROR']:
                    err_msg_runway = getattr(task_details_runway,'error_message',None) or getattr(getattr(task_details_runway,'output',None),'error',"Unknown Runway error.")
                    logger.error(f"Runway task {task_id_runway} status: {task_details_runway.status}. Error: {err_msg_runway}"); return None
            logger.warning(f"Runway task {task_id_runway} timed out."); return None
        except AttributeError as ae_sdk: logger.error(f"RunwayML SDK AttrError: {ae_sdk}. SDK/methods changed?", exc_info=True); return None
        except Exception as e_runway_gen: logger.error(f"Runway Gen-4 API error: {e_runway_gen}", exc_info=True); return None

    def _create_placeholder_video_content(self, text_desc_ph, filename_ph, duration_ph=4, size_ph=None):
        # <<< THIS IS THE CORRECTED METHOD >>>
        if size_ph is None: size_ph = self.video_frame_size
        filepath_ph = os.path.join(self.output_dir, filename_ph)
        text_clip_ph = None 
        try: # Ensure try block is here
            text_clip_ph = TextClip(text_desc_ph, fontsize=50, color='white', font=self.video_overlay_font,
                                bg_color='black', size=size_ph, method='caption').set_duration(duration_ph)
            text_clip_ph.write_videofile(filepath_ph, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
            logger.info(f"Generic placeholder video created: {filepath_ph}")
            return filepath_ph
        except Exception as e_ph_vid: 
            logger.error(f"Failed to create generic placeholder video '{filepath_ph}': {e_ph_vid}", exc_info=True)
            return None
        finally: # Ensure finally block is here
            if text_clip_ph and hasattr(text_clip_ph, 'close'):
                text_clip_ph.close()
    
    def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
                             scene_data_dict, scene_identifier_fn_base,
                             generate_as_video_clip_flag=False, runway_target_dur_val=5):
        # (Corrected DALL-E loop from previous response)
        base_name_asset, _ = os.path.splitext(scene_identifier_fn_base)
        asset_info_result = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
        path_for_input_image_runway = None
        fn_for_base_image = base_name_asset + ("_base_for_video.png" if generate_as_video_clip_flag else ".png")
        fp_for_base_image = os.path.join(self.output_dir, fn_for_base_image)
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_r_dalle, attempt_count_dalle = 2,0;
            for att_n_dalle in range(max_r_dalle):
                attempt_count_dalle = att_n_dalle + 1
                try: 
                    logger.info(f"Att {attempt_count_dalle} DALL-E (base img): {image_generation_prompt_text[:70]}..."); oai_cl = openai.OpenAI(api_key=self.openai_api_key,timeout=90.0); oai_r = oai_cl.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid"); oai_iu = oai_r.data[0].url; oai_rp = getattr(oai_r.data[0],'revised_prompt',None);
                    if oai_rp: logger.info(f"DALL-E revised: {oai_rp[:70]}...")
                    oai_ir = requests.get(oai_iu,timeout=120); oai_ir.raise_for_status(); oai_id = Image.open(io.BytesIO(oai_ir.content));
                    if oai_id.mode!='RGB': oai_id=oai_id.convert('RGB')
                    oai_id.save(fp_for_base_image); logger.info(f"DALL-E base img saved: {fp_for_base_image}"); path_for_input_image_runway=fp_for_base_image; asset_info_result={'path':fp_for_base_image,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':oai_rp}; break 
                except openai.RateLimitError as e_oai_rl: logger.warning(f"OpenAI RateLimit Att {attempt_count_dalle}:{e_oai_rl}.Retry...");time.sleep(5*attempt_count_dalle);asset_info_result['error_message']=str(e_oai_rl)
                except openai.APIError as e_oai_api: logger.error(f"OpenAI APIError Att {attempt_count_dalle}:{e_oai_api}");asset_info_result['error_message']=str(e_oai_api);break
                except requests.exceptions.RequestException as e_oai_req: logger.error(f"Requests Err DALL-E Att {attempt_count_dalle}:{e_oai_req}");asset_info_result['error_message']=str(e_oai_req);break
                except Exception as e_oai_gen: logger.error(f"General DALL-E Err Att {attempt_count_dalle}:{e_oai_gen}",exc_info=True);asset_info_result['error_message']=str(e_oai_gen);break
            if asset_info_result['error']: logger.warning(f"DALL-E failed after {attempt_count_dalle} attempts for base img.")
        if asset_info_result['error'] and self.USE_PEXELS:
            logger.info("Trying Pexels for base img.");px_qt=scene_data_dict.get('pexels_search_query_๊ฐ๋…',f"{scene_data_dict.get('emotional_beat','')} {scene_data_dict.get('setting_description','')}");px_pp=self._search_pexels_image(px_qt,fn_for_base_image);
            if px_pp:path_for_input_image_runway=px_pp;asset_info_result={'path':px_pp,'type':'image','error':False,'prompt_used':f"Pexels:{px_qt}"}
            else:current_em_px=asset_info_result.get('error_message',"");asset_info_result['error_message']=(current_em_px+" Pexels failed for base.").strip()
        if asset_info_result['error']:
            logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ph_ppt=asset_info_result.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ph_ppt[:70]}...",fn_for_base_image);
            if php:path_for_input_image_runway=php;asset_info_result={'path':php,'type':'image','error':False,'prompt_used':ph_ppt}
            else:current_em_ph=asset_info_result.get('error_message',"");asset_info_result['error_message']=(current_em_ph+" Base placeholder failed.").strip()
        if generate_as_video_clip_flag:
            if not path_for_input_image_runway:logger.error("RunwayML video: base img failed.");asset_info_result['error']=True;asset_info_result['error_message']=(asset_info_result.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info_result['type']='none';return asset_info_result
            if self.USE_RUNWAYML:
                runway_video_p=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,path_for_input_image_runway,base_name_asset,runway_target_dur_val)
                if runway_video_p and os.path.exists(runway_video_p):asset_info_result={'path':runway_video_p,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':path_for_input_image_runway}
                else:logger.warning(f"RunwayML video failed for {base_name_asset}. Fallback to base img.");asset_info_result['error']=True;asset_info_result['error_message']=(asset_info_result.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info_result['path']=path_for_input_image_runway;asset_info_result['type']='image';asset_info_result['prompt_used']=image_generation_prompt_text
            else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info_result['error']=True;asset_info_result['error_message']=(asset_info_result.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info_result['path']=path_for_input_image_runway;asset_info_result['type']='image';asset_info_result['prompt_used']=image_generation_prompt_text
        return asset_info_result

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        # <<< CORRECTED VERSION OF THIS METHOD >>>
        if not self.USE_ELEVENLABS or not self.elevenlabs_client_instance or not text_to_narrate:
            logger.info("ElevenLabs conditions not met (service disabled, client not init, or no text). Skipping audio generation.")
            return None
        audio_filepath_narration = os.path.join(self.output_dir, output_filename)
        try:
            logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for text: \"{text_to_narrate[:70]}...\"")
            audio_stream_method_11l = None
            if hasattr(self.elevenlabs_client_instance, 'text_to_speech') and hasattr(self.elevenlabs_client_instance.text_to_speech, 'stream'):
                audio_stream_method_11l = self.elevenlabs_client_instance.text_to_speech.stream; logger.info("Using ElevenLabs SDK method: client.text_to_speech.stream()")
            elif hasattr(self.elevenlabs_client_instance, 'generate_stream'):
                audio_stream_method_11l = self.elevenlabs_client_instance.generate_stream; logger.info("Using ElevenLabs SDK method: client.generate_stream()")
            elif hasattr(self.elevenlabs_client_instance, 'generate'):
                logger.info("Using ElevenLabs SDK method: client.generate() (non-streaming).")
                voice_param_11l = str(self.elevenlabs_voice_id)
                if Voice and self.elevenlabs_voice_settings_obj: voice_param_11l = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings_obj)
                audio_bytes_data = self.elevenlabs_client_instance.generate(text=text_to_narrate, voice=voice_param_11l, model="eleven_multilingual_v2")
                with open(audio_filepath_narration, "wb") as audio_file_out: audio_file_out.write(audio_bytes_data)
                logger.info(f"ElevenLabs audio (non-streamed) saved successfully to: {audio_filepath_narration}"); return audio_filepath_narration
            else: logger.error("No recognized audio generation method found on the ElevenLabs client instance."); return None

            if audio_stream_method_11l: # If a streaming method was identified
                params_for_voice_stream = {"voice_id": str(self.elevenlabs_voice_id)}
                if self.elevenlabs_voice_settings_obj:
                    if hasattr(self.elevenlabs_voice_settings_obj, 'model_dump'): params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj.model_dump()
                    elif hasattr(self.elevenlabs_voice_settings_obj, 'dict'): params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj.dict()
                    else: params_for_voice_stream["voice_settings"] = self.elevenlabs_voice_settings_obj
                audio_data_iterator_11l = audio_stream_method_11l(text=text_to_narrate, model_id="eleven_multilingual_v2", **params_for_voice_stream)
                with open(audio_filepath_narration, "wb") as audio_file_out_stream:
                    for audio_chunk_data in audio_data_iterator_11l:
                        if audio_chunk_data: audio_file_out_stream.write(audio_chunk_data)
                logger.info(f"ElevenLabs audio (streamed) saved successfully to: {audio_filepath_narration}"); return audio_filepath_narration
        except AttributeError as ae_11l_sdk: logger.error(f"AttributeError with ElevenLabs SDK client: {ae_11l_sdk}. SDK version/methods might differ.", exc_info=True); return None
        except Exception as e_11l_general_audio: logger.error(f"General error during ElevenLabs audio generation: {e_11l_general_audio}", exc_info=True); return None


    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        # (Keep as in the version with robust image processing, C-contiguous array, debug saves, and pix_fmt)
        # ... (This extensive method is assumed to be largely correct from the previous iteration focusing on blank video issues)
        if not asset_data_list: logger.warning("No assets for animatic."); return None
        processed_moviepy_clips_list = []; narration_audio_clip_mvpy = None; final_video_output_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Target Frame: {self.video_frame_size}.")
        for i_asset, asset_info_item_loop in enumerate(asset_data_list):
            path_of_asset, type_of_asset, duration_for_scene = asset_info_item_loop.get('path'), asset_info_item_loop.get('type'), asset_info_item_loop.get('duration', 4.5)
            num_of_scene, action_in_key = asset_info_item_loop.get('scene_num', i_asset + 1), asset_info_item_loop.get('key_action', '')
            logger.info(f"S{num_of_scene}: Path='{path_of_asset}', Type='{type_of_asset}', Dur='{duration_for_scene}'s")
            if not (path_of_asset and os.path.exists(path_of_asset)): logger.warning(f"S{num_of_scene}: Not found '{path_of_asset}'. Skip."); continue
            if duration_for_scene <= 0: logger.warning(f"S{num_of_scene}: Invalid duration ({duration_for_scene}s). Skip."); continue
            active_scene_clip = None
            try:
                if type_of_asset == 'image':
                    opened_pil_img = Image.open(path_of_asset); logger.debug(f"S{num_of_scene}: Loaded img. Mode:{opened_pil_img.mode}, Size:{opened_pil_img.size}")
                    converted_img_rgba = opened_pil_img.convert('RGBA') if opened_pil_img.mode != 'RGBA' else opened_pil_img.copy()
                    thumbnailed_img = converted_img_rgba.copy(); resample_f = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumbnailed_img.thumbnail(self.video_frame_size,resample_f)
                    rgba_canvas = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); pos_x,pos_y=(self.video_frame_size[0]-thumbnailed_img.width)//2,(self.video_frame_size[1]-thumbnailed_img.height)//2
                    rgba_canvas.paste(thumbnailed_img,(pos_x,pos_y),thumbnailed_img)
                    final_rgb_img_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_img_pil.paste(rgba_canvas,mask=rgba_canvas.split()[3])
                    debug_path_img_pre_numpy = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{num_of_scene}.png"); final_rgb_img_pil.save(debug_path_img_pre_numpy); logger.info(f"DEBUG: Saved PRE_NUMPY_S{num_of_scene} to {debug_path_img_pre_numpy}")
                    numpy_frame_arr = np.array(final_rgb_img_pil,dtype=np.uint8);
                    if not numpy_frame_arr.flags['C_CONTIGUOUS']: numpy_frame_arr=np.ascontiguousarray(numpy_frame_arr,dtype=np.uint8)
                    logger.debug(f"S{num_of_scene}: NumPy for MoviePy. Shape:{numpy_frame_arr.shape}, DType:{numpy_frame_arr.dtype}, C-Contig:{numpy_frame_arr.flags['C_CONTIGUOUS']}")
                    if numpy_frame_arr.size==0 or numpy_frame_arr.ndim!=3 or numpy_frame_arr.shape[2]!=3: logger.error(f"S{num_of_scene}: Invalid NumPy array for MoviePy. Skip."); continue
                    base_image_clip = ImageClip(numpy_frame_arr,transparent=False).set_duration(duration_for_scene)
                    debug_path_moviepy_frame=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{num_of_scene}.png"); base_image_clip.save_frame(debug_path_moviepy_frame,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{num_of_scene} to {debug_path_moviepy_frame}")
                    fx_image_clip = base_image_clip
                    try: scale_end_kb=random.uniform(1.03,1.08); fx_image_clip=base_image_clip.fx(vfx.resize,lambda t_val:1+(scale_end_kb-1)*(t_val/duration_for_scene) if duration_for_scene>0 else 1).set_position('center')
                    except Exception as e_kb_fx: logger.error(f"S{num_of_scene} Ken Burns error: {e_kb_fx}",exc_info=False)
                    active_scene_clip = fx_image_clip
                elif type_of_asset == 'video':
                    source_video_clip_obj=None
                    try:
                        source_video_clip_obj=VideoFileClip(path_of_asset,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
                        temp_video_clip_obj_loop=source_video_clip_obj
                        if source_video_clip_obj.duration!=duration_for_scene:
                            if source_video_clip_obj.duration>duration_for_scene:temp_video_clip_obj_loop=source_video_clip_obj.subclip(0,duration_for_scene)
                            else:
                                if duration_for_scene/source_video_clip_obj.duration > 1.5 and source_video_clip_obj.duration>0.1:temp_video_clip_obj_loop=source_video_clip_obj.loop(duration=duration_for_scene)
                                else:temp_video_clip_obj_loop=source_video_clip_obj.set_duration(source_video_clip_obj.duration);logger.info(f"S{num_of_scene} Video clip ({source_video_clip_obj.duration:.2f}s) shorter than target ({duration_for_scene:.2f}s).")
                        active_scene_clip=temp_video_clip_obj_loop.set_duration(duration_for_scene)
                        if active_scene_clip.size!=list(self.video_frame_size):active_scene_clip=active_scene_clip.resize(self.video_frame_size)
                    except Exception as e_vid_load_loop:logger.error(f"S{num_of_scene} Video load error '{path_of_asset}':{e_vid_load_loop}",exc_info=True);continue
                    finally:
                        if source_video_clip_obj and source_video_clip_obj is not active_scene_clip and hasattr(source_video_clip_obj,'close'):source_video_clip_obj.close()
                else: logger.warning(f"S{num_of_scene} Unknown asset type '{type_of_asset}'. Skip."); continue
                if active_scene_clip and action_in_key:
                    try:
                        dur_text_overlay=min(active_scene_clip.duration-0.5,active_scene_clip.duration*0.8)if active_scene_clip.duration>0.5 else active_scene_clip.duration; start_text_overlay=0.25
                        if dur_text_overlay > 0:
                            text_clip_for_overlay=TextClip(f"Scene {num_of_scene}\n{action_in_key}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.active_moviepy_font_name,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(dur_text_overlay).set_start(start_text_overlay).set_position(('center',0.92),relative=True)
                            active_scene_clip=CompositeVideoClip([active_scene_clip,text_clip_for_overlay],size=self.video_frame_size,use_bgclip=True)
                        else: logger.warning(f"S{num_of_scene}: Text overlay duration zero. Skip text.")
                    except Exception as e_txt_comp:logger.error(f"S{num_of_scene} TextClip error:{e_txt_comp}. No text.",exc_info=True)
                if active_scene_clip:processed_moviepy_clips_list.append(active_scene_clip);logger.info(f"S{num_of_scene} Processed. Dur:{active_scene_clip.duration:.2f}s.")
            except Exception as e_asset_loop_main:logger.error(f"MAJOR Error processing asset for S{num_of_scene} ({path_of_asset}):{e_asset_loop_main}",exc_info=True)
            finally:
                if active_scene_clip and hasattr(active_scene_clip,'close'):
                    try: active_scene_clip.close()
                    except: pass
        if not processed_moviepy_clips_list:logger.warning("No clips processed for animatic. Aborting.");return None
        transition_duration_val=0.75
        try:
            logger.info(f"Concatenating {len(processed_moviepy_clips_list)} clips for final animatic.");
            if len(processed_moviepy_clips_list)>1:final_video_output_clip=concatenate_videoclips(processed_moviepy_clips_list,padding=-transition_duration_val if transition_duration_val>0 else 0,method="compose")
            elif processed_moviepy_clips_list:final_video_output_clip=processed_moviepy_clips_list[0]
            if not final_video_output_clip:logger.error("Concatenation resulted in a None clip. Aborting.");return None
            logger.info(f"Concatenated animatic duration:{final_video_output_clip.duration:.2f}s")
            if transition_duration_val>0 and final_video_output_clip.duration>0:
                if final_video_output_clip.duration>transition_duration_val*2:final_video_output_clip=final_video_output_clip.fx(vfx.fadein,transition_duration_val).fx(vfx.fadeout,transition_duration_val)
                else:final_video_output_clip=final_video_output_clip.fx(vfx.fadein,min(transition_duration_val,final_video_output_clip.duration/2.0))
            if overall_narration_path and os.path.exists(overall_narration_path) and final_video_output_clip.duration>0:
                try:narration_audio_clip_mvpy=AudioFileClip(overall_narration_path);final_video_output_clip=final_video_output_clip.set_audio(narration_audio_clip_mvpy);logger.info("Overall narration added to animatic.")
                except Exception as e_narr_add:logger.error(f"Error adding narration to animatic:{e_narr_add}",exc_info=True)
            elif final_video_output_clip.duration<=0:logger.warning("Animatic has no duration. Audio not added.")
            if final_video_output_clip and final_video_output_clip.duration>0:
                final_output_path_str=os.path.join(self.output_dir,output_filename);logger.info(f"Writing final animatic video to:{final_output_path_str} (Duration:{final_video_output_clip.duration:.2f}s)")
                final_video_output_clip.write_videofile(final_output_path_str,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
                logger.info(f"Animatic video created successfully:{final_output_path_str}");return final_output_path_str
            else:logger.error("Final animatic clip is invalid or has zero duration. Cannot write video file.");return None
        except Exception as e_vid_write_final:logger.error(f"Error during final animatic video file writing or composition:{e_vid_write_final}",exc_info=True);return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` main finally block.")
            all_clips_to_close_list = processed_moviepy_clips_list + ([narration_audio_clip_mvpy] if narration_audio_clip_mvpy else []) + ([final_video_output_clip] if final_video_output_clip else [])
            for clip_item_to_close in all_clips_to_close_list:
                if clip_item_to_close and hasattr(clip_item_to_close, 'close'):
                    try: clip_item_to_close.close()
                    except Exception as e_final_close: logger.warning(f"Ignoring error while closing a MoviePy clip: {type(clip_item_to_close).__name__} - {e_final_close}")