File size: 36,970 Bytes
e22eb13 e0b9b11 62838f2 b6860f8 b1b7840 62838f2 b1b7840 e22eb13 62838f2 e22eb13 62838f2 b1b7840 f13d4b2 5089920 f13d4b2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 5089920 62838f2 b1b7840 62838f2 4c2220b f13d4b2 287c9ca 62838f2 e0b9b11 62838f2 55ef0ff 62838f2 b6860f8 55ef0ff 62838f2 b1b7840 62838f2 55ef0ff b1b7840 d44d308 b1b7840 55ef0ff b1b7840 62838f2 b1b7840 62838f2 200c5c4 09d5c67 62838f2 b1b7840 d44d308 b1b7840 b6860f8 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b6860f8 62838f2 b6860f8 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 55ef0ff 62838f2 b1b7840 62838f2 b1b7840 62838f2 55ef0ff b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 55ef0ff 62838f2 b6860f8 62838f2 55ef0ff 62838f2 b6860f8 b1b7840 62838f2 b6860f8 62838f2 b6860f8 62838f2 55ef0ff 4da81e5 b1b7840 62838f2 b1b7840 62838f2 b6860f8 b1b7840 62838f2 b1b7840 b6860f8 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b6860f8 62838f2 b6860f8 62838f2 b6860f8 62838f2 b6860f8 62838f2 b1b7840 62838f2 b6860f8 b1b7840 b6860f8 b1b7840 62838f2 b1b7840 62838f2 b6860f8 62838f2 b6860f8 62838f2 b1b7840 b6860f8 b1b7840 b6860f8 b1b7840 5089920 b6860f8 e22eb13 b6860f8 62838f2 b1b7840 62838f2 b1b7840 cb93f9c 62838f2 610a011 4da81e5 b6860f8 62838f2 b6860f8 62838f2 b6860f8 62838f2 b6860f8 b1b7840 62838f2 b6860f8 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b6860f8 b1b7840 62838f2 b1b7840 62838f2 b1b7840 4da81e5 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b6860f8 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 b6860f8 b1b7840 62838f2 b1b7840 62838f2 b6860f8 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 b6860f8 b1b7840 62838f2 b1b7840 b6860f8 b1b7840 cb93f9c 610a011 62838f2 b6860f8 610a011 b1b7840 610a011 8583908 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 62838f2 b1b7840 b6860f8 b1b7840 62838f2 b1b7840 b6860f8 b1b7840 b6860f8 b1b7840 610a011 b1b7840 62838f2 b1b7840 610a011 62838f2 b1b7840 3313da9 b1b7840 b6860f8 62838f2 b1b7840 cb93f9c b1b7840 b6860f8 b1b7840 b6860f8 b1b7840 59af6e7 b6860f8 b1b7840 610a011 59af6e7 b6860f8 b1b7840 62838f2 b6860f8 62838f2 b6860f8 62838f2 b1b7840 cb93f9c 62838f2 b1b7840 b97795f b1b7840 b6860f8 b1b7840 610a011 b1b7840 b6860f8 b1b7840 62838f2 b6860f8 b1b7840 62838f2 b1b7840 62838f2 b1b7840 754c854 b6860f8 62838f2 b1b7840 62838f2 b1b7840 62838f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
if not hasattr(Image, 'ANTIALIAS'):
Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'): # Pillow 8
if not hasattr(Image, 'ANTIALIAS'):
Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp:
print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None
Voice = None
VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
logger.info("ElevenLabs client components imported.")
except Exception as e_eleven:
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False
RunwayMLClient = None
try:
logger.info("RunwayML SDK import is a placeholder.")
except ImportError:
logger.warning("RunwayML SDK (placeholder) not found. RunwayML disabled.")
except Exception as e_runway_sdk:
logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "DejaVuSans-Bold.ttf"
font_paths_to_try = [
self.font_filename,
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
f"/System/Library/Fonts/Supplemental/Arial.ttf",
f"C:/Windows/Fonts/arial.ttf",
f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"
]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'DejaVu-Sans-Bold'
try:
if self.font_path_pil:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
logger.info(f"Pillow font loaded: {self.font_path_pil}.")
else:
self.font = ImageFont.load_default()
logger.warning("Using default Pillow font.")
self.font_size_pil = 10
except IOError as e_font:
logger.error(f"Pillow font loading IOError: {e_font}. Using default.")
self.font = ImageFont.load_default()
self.font_size_pil = 10
self.openai_api_key = None
self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"
self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None
self.USE_ELEVENLABS = False
self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
self.elevenlabs_voice_settings = VoiceSettings(
stability=0.60,
similarity_boost=0.80,
style=0.15,
use_speaker_boost=True
)
else:
self.elevenlabs_voice_settings = None
self.pexels_api_key = None
self.USE_PEXELS = False
self.runway_api_key = None
self.USE_RUNWAYML = False
self.runway_client = None
logger.info("VisualEngine initialized.")
def set_openai_api_key(self, k):
self.openai_api_key = k
self.USE_AI_IMAGE_GENERATION = bool(k)
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
self.elevenlabs_api_key = api_key
if voice_id_from_secret:
self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
self.USE_ELEVENLABS = bool(self.elevenlabs_client)
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e:
logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True)
self.USE_ELEVENLABS = False
else:
self.USE_ELEVENLABS = False
logger.info("ElevenLabs Disabled (no key or SDK).")
def set_pexels_api_key(self, k):
self.pexels_api_key = k
self.USE_PEXELS = bool(k)
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k):
self.runway_api_key = k
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
try:
self.USE_RUNWAYML = True
logger.info(f"RunwayML Client (Placeholder SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
except Exception as e:
logger.error(f"RunwayML client (Placeholder SDK) init error: {e}. Disabled.", exc_info=True)
self.USE_RUNWAYML = False
elif k:
self.USE_RUNWAYML = True
logger.info("RunwayML API Key set (direct API or placeholder).")
else:
self.USE_RUNWAYML = False
logger.info("RunwayML Disabled (no API key).")
def _get_text_dimensions(self, text_content, font_obj):
default_line_height = getattr(font_obj, 'size', self.font_size_pil)
if not text_content:
return 0, default_line_height
try:
if hasattr(font_obj, 'getbbox'):
bbox = font_obj.getbbox(text_content)
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
return width, height if height > 0 else default_line_height
elif hasattr(font_obj, 'getsize'):
width, height = font_obj.getsize(text_content)
return width, height if height > 0 else default_line_height
else:
return int(len(text_content) * default_line_height * 0.6), int(default_line_height * 1.2)
except Exception as e:
logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}")
return int(len(text_content) * self.font_size_pil * 0.6), int(self.font_size_pil * 1.2)
def _create_placeholder_image_content(self, text_description, filename, size=None):
if size is None:
size = self.video_frame_size
img = Image.new('RGB', size, color=(20, 20, 40))
draw = ImageDraw.Draw(img)
padding = 25
max_text_width = size[0] - (2 * padding)
lines = []
if not text_description:
text_description = "(Placeholder: No text description provided)"
words = text_description.split()
current_line = ""
for word in words:
test_line = current_line + word + " "
line_width_test, _ = self._get_text_dimensions(test_line.strip(), self.font)
if line_width_test <= max_text_width:
current_line = test_line
else:
if current_line.strip():
lines.append(current_line.strip())
word_width, _ = self._get_text_dimensions(word, self.font)
if word_width > max_text_width:
avg_char_w = self._get_text_dimensions("A", self.font)[0] or 10
chars_that_fit = int(max_text_width / avg_char_w) if avg_char_w > 0 else 10
if len(word) > chars_that_fit:
lines.append(word[:chars_that_fit-3] + "...")
else:
lines.append(word)
current_line = ""
else:
current_line = word + " "
if current_line.strip():
lines.append(current_line.strip())
if not lines and text_description:
avg_char_w = self._get_text_dimensions("A", self.font)[0] or 10
chars_that_fit = int(max_text_width / avg_char_w) if avg_char_w > 0 else 10
if len(text_description) > chars_that_fit:
lines.append(text_description[:chars_that_fit-3] + "...")
else:
lines.append(text_description)
elif not lines:
lines.append("(Placeholder Text Error)")
_, single_line_height = self._get_text_dimensions("Ay", self.font)
single_line_height = single_line_height if single_line_height > 0 else (self.font_size_pil + 2)
line_spacing = 2
max_lines_to_display = min(len(lines), (size[1] - (2 * padding)) // (single_line_height + line_spacing)) if single_line_height > 0 else 1
if max_lines_to_display <= 0:
max_lines_to_display = 1
total_text_block_height = max_lines_to_display * single_line_height + (max_lines_to_display - 1) * line_spacing
y_text_start = padding + (size[1] - (2 * padding) - total_text_block_height) / 2.0
current_y = y_text_start
for i in range(max_lines_to_display):
line_content = lines[i]
line_width_actual, _ = self._get_text_dimensions(line_content, self.font)
x_text = max(padding, (size[0] - line_width_actual) / 2.0)
draw.text((x_text, current_y), line_content, font=self.font, fill=(200, 200, 180))
current_y += single_line_height + line_spacing
if i == 6 and max_lines_to_display > 7 and len(lines) > max_lines_to_display:
ellipsis_width, _ = self._get_text_dimensions("...", self.font)
x_ellipsis = max(padding, (size[0] - ellipsis_width) / 2.0)
draw.text((x_ellipsis, current_y), "...", font=self.font, fill=(200, 200, 180))
break
filepath = os.path.join(self.output_dir, filename)
try:
img.save(filepath)
return filepath
except Exception as e:
logger.error(f"Error saving placeholder image {filepath}: {e}", exc_info=True)
return None
def _search_pexels_image(self, query, output_filename_base):
if not self.USE_PEXELS or not self.pexels_api_key:
return None
headers = {"Authorization": self.pexels_api_key}
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
base_name, _ = os.path.splitext(output_filename_base)
pexels_filename = base_name + f"_pexels_{random.randint(1000,9999)}.jpg"
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Pexels search: '{query}'")
effective_query = " ".join(query.split()[:5])
params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status()
data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_details = data["photos"][0]
photo_url = photo_details["src"]["large2x"]
logger.info(f"Downloading Pexels image from: {photo_url}")
image_response = requests.get(photo_url, timeout=60)
image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB':
logger.debug(f"Pexels image mode is {img_data.mode}, converting to RGB.")
img_data = img_data.convert('RGB')
img_data.save(filepath)
logger.info(f"Pexels image saved successfully: {filepath}")
return filepath
else:
logger.info(f"No photos found on Pexels for query: '{effective_query}'")
return None
except requests.exceptions.RequestException as e_req:
logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True)
except json.JSONDecodeError as e_json:
logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True)
except Exception as e:
logger.error(f"General Pexels error for query '{query}': {e}", exc_info=True)
return None
def _generate_video_clip_with_runwayml(self, pt, iip, sifnb, tds=5):
if not self.USE_RUNWAYML or not self.runway_api_key:
logger.warning("RunwayML disabled.")
return None
if not iip or not os.path.exists(iip):
logger.error(f"Runway Gen-4 needs input image. Path invalid: {iip}")
return None
runway_dur = 10 if tds > 7 else 5
ovfn = sifnb.replace(".png", f"_runway_gen4_d{runway_dur}s.mp4")
ovfp = os.path.join(self.output_dir, ovfn)
logger.info(f"Runway Gen-4 (Placeholder) img: {os.path.basename(iip)}, motion: '{pt[:100]}...', dur: {runway_dur}s")
logger.warning("Using PLACEHOLDER video for Runway Gen-4.")
img_clip = None
txt_c = None
final_ph_clip = None
try:
img_clip = ImageClip(iip).set_duration(runway_dur)
txt = f"Runway Gen-4 Placeholder\nInput: {os.path.basename(iip)}\nMotion: {pt[:50]}..."
txt_c = TextClip(
txt,
fontsize=24,
color='white',
font=self.video_overlay_font,
bg_color='rgba(0,0,0,0.5)',
size=(self.video_frame_size[0] * 0.8, None),
method='caption'
).set_duration(runway_dur).set_position('center')
final_ph_clip = CompositeVideoClip([img_clip, txt_c], size=img_clip.size)
final_ph_clip.write_videofile(ovfp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
logger.info(f"Runway Gen-4 placeholder video: {ovfp}")
return ovfp
except Exception as e:
logger.error(f"Runway Gen-4 placeholder error: {e}", exc_info=True)
return None
finally:
if img_clip and hasattr(img_clip, 'close'):
img_clip.close()
if txt_c and hasattr(txt_c, 'close'):
txt_c.close()
if final_ph_clip and hasattr(final_ph_clip, 'close'):
final_ph_clip.close()
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
if size is None:
size = self.video_frame_size
filepath = os.path.join(self.output_dir, filename)
txt_clip = None
try:
txt_clip = TextClip(
text_description,
fontsize=50,
color='white',
font=self.video_overlay_font,
bg_color='black',
size=size,
method='caption'
).set_duration(duration)
txt_clip.write_videofile(
filepath,
fps=24,
codec='libx264',
preset='ultrafast',
logger=None,
threads=2
)
logger.info(f"Generic placeholder video created successfully: {filepath}")
return filepath
except Exception as e:
logger.error(f"Failed to create generic placeholder video {filepath}: {e}", exc_info=True)
return None
finally:
if txt_clip and hasattr(txt_clip, 'close'):
try:
txt_clip.close()
except Exception as e_close:
logger.warning(f"Error closing TextClip in _create_placeholder_video_content: {e_close}")
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=5):
base_name = scene_identifier_filename_base
asset_info = {
'path': None,
'type': 'none',
'error': True,
'prompt_used': image_generation_prompt_text,
'error_message': 'Generation not attempted'
}
input_image_for_runway_path = None
image_filename_for_base = base_name + "_base_image.png"
temp_image_asset_info = {
'error': True,
'prompt_used': image_generation_prompt_text,
'error_message': 'Base image generation not attempted'
}
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_r, att_n = 2, 0
for att_n in range(max_r):
try:
img_fp_dalle = os.path.join(self.output_dir, image_filename_for_base)
logger.info(f"Attempt {att_n+1} DALL-E (base img): {image_generation_prompt_text[:100]}...")
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
r = cl.images.generate(
model=self.dalle_model,
prompt=image_generation_prompt_text,
n=1,
size=self.image_size_dalle3,
quality="hd",
response_format="url",
style="vivid"
)
iu = r.data[0].url
rp = getattr(r.data[0], 'revised_prompt', None)
if rp:
logger.info(f"DALL-E revised: {rp[:100]}...")
ir = requests.get(iu, timeout=120)
ir.raise_for_status()
id_img = Image.open(io.BytesIO(ir.content))
if id_img.mode != 'RGB':
id_img = id_img.convert('RGB')
id_img.save(img_fp_dalle)
logger.info(f"DALL-E base image: {img_fp_dalle}")
input_image_for_runway_path = img_fp_dalle
temp_image_asset_info = {
'path': img_fp_dalle,
'type': 'image',
'error': False,
'prompt_used': image_generation_prompt_text,
'revised_prompt': rp
}
break
except openai.RateLimitError as e:
logger.warning(f"OpenAI Rate Limit {att_n+1}: {e}. Retry...")
time.sleep(5 * (att_n + 1))
temp_image_asset_info['error_message'] = str(e)
except Exception as e:
logger.error(f"DALL-E error: {e}", exc_info=True)
temp_image_asset_info['error_message'] = str(e)
break
if temp_image_asset_info['error']:
logger.warning(f"DALL-E failed after {att_n+1} attempts for base image.")
if temp_image_asset_info['error'] and self.USE_PEXELS:
pqt = scene_data.get('pexels_search_query_๊ฐ๋
',
f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pp = self._search_pexels_image(pqt, image_filename_for_base)
if pp:
input_image_for_runway_path = pp
temp_image_asset_info = {
'path': pp,
'type': 'image',
'error': False,
'prompt_used': f"Pexels: {pqt}"
}
else:
current_em = temp_image_asset_info.get('error_message', "")
temp_image_asset_info['error_message'] = (current_em + " Pexels failed.").strip()
if temp_image_asset_info['error']:
logger.warning("Base image (DALL-E/Pexels) failed. Placeholder base image.")
ppt = temp_image_asset_info.get('prompt_used', image_generation_prompt_text)
php = self._create_placeholder_image_content(f"[Base Img Placeholder] {ppt[:100]}...", image_filename_for_base)
if php:
input_image_for_runway_path = php
temp_image_asset_info = {
'path': php,
'type': 'image',
'error': False,
'prompt_used': ppt
}
else:
current_em = temp_image_asset_info.get('error_message', "")
temp_image_asset_info['error_message'] = (current_em + " Base placeholder failed.").strip()
if generate_as_video_clip:
if self.USE_RUNWAYML and input_image_for_runway_path:
video_path = self._generate_video_clip_with_runwayml(
motion_prompt_text_for_video,
input_image_for_runway_path,
base_name,
runway_target_duration
)
if video_path and os.path.exists(video_path):
return {
'path': video_path,
'type': 'video',
'error': False,
'prompt_used': motion_prompt_text_for_video,
'base_image_path': input_image_for_runway_path
}
else:
asset_info = temp_image_asset_info
asset_info['error'] = True
asset_info['error_message'] = "RunwayML video gen failed; using base image."
asset_info['type'] = 'image'
return asset_info
elif not self.USE_RUNWAYML:
asset_info = temp_image_asset_info
asset_info['error_message'] = "RunwayML disabled; using base image."
asset_info['type'] = 'image'
return asset_info
else:
asset_info = temp_image_asset_info
asset_info['error_message'] = (asset_info.get('error_message', "") + " Base image failed, Runway video not attempted.").strip()
asset_info['type'] = 'image'
return asset_info
else:
return temp_image_asset_info
def generate_narration_audio(self, ttn, ofn="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not ttn:
logger.info("11L skip.")
return None
afp = os.path.join(self.output_dir, ofn)
try:
logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {ttn[:70]}...")
asm = None
if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
asm = self.elevenlabs_client.text_to_speech.stream
logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client, 'generate_stream'):
asm = self.elevenlabs_client.generate_stream
logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client, 'generate'):
logger.info("Using 11L .generate()")
vp = Voice(voice_id=str(self.elevenlabs_voice_id),
settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
ab = self.elevenlabs_client.generate(text=ttn, voice=vp, model="eleven_multilingual_v2")
with open(afp, "wb") as f:
f.write(ab)
logger.info(f"11L audio (non-stream): {afp}")
return afp
else:
logger.error("No 11L audio method.")
return None
if asm:
vps = {"voice_id": str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings, 'model_dump'):
vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings, 'dict'):
vps["voice_settings"] = self.elevenlabs_voice_settings.dict()
else:
vps["voice_settings"] = self.elevenlabs_voice_settings
adi = asm(text=ttn, model_id="eleven_multilingual_v2", **vps)
with open(afp, "wb") as f:
for c in adi:
if c:
f.write(c)
logger.info(f"11L audio (stream): {afp}")
return afp
except Exception as e:
logger.error(f"11L audio error: {e}", exc_info=True)
return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list:
logger.warning("No assets for animatic.")
return None
processed_clips = []
narration_clip = None
final_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path = asset_info.get('path')
asset_type = asset_info.get('type')
scene_dur = asset_info.get('duration', 4.5)
scene_num = asset_info.get('scene_num', i + 1)
key_action = asset_info.get('key_action', '')
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
if not (asset_path and os.path.exists(asset_path)):
logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.")
continue
if scene_dur <= 0:
logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.")
continue
current_scene_mvpy_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path)
logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
thumb = img_rgba.copy()
rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else Image.BILINEAR
thumb.thumbnail(self.video_frame_size, rf)
cv_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0))
xo = (self.video_frame_size[0] - thumb.width) // 2
yo = (self.video_frame_size[1] - thumb.height) // 2
cv_rgba.paste(thumb, (xo, yo), thumb)
final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0))
final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3])
dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png")
final_rgb_pil.save(dbg_path)
logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
frame_np = np.array(final_rgb_pil, dtype=np.uint8)
if not frame_np.flags['C_CONTIGUOUS']:
frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8)
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
logger.error(f"S{scene_num}: Invalid NumPy. Skip.")
continue
clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur)
mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
clip_base.save_frame(mvpy_dbg_path, t=0.1)
logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
clip_fx = clip_base
try:
es = random.uniform(1.03, 1.08)
clip_fx = clip_base.fx(
vfx.resize,
lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1
).set_position('center')
except Exception as e:
logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False)
current_scene_mvpy_clip = clip_fx
elif asset_type == 'video':
src_clip = None
try:
src_clip = VideoFileClip(
asset_path,
target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None,
audio=False
)
tmp_clip = src_clip
if src_clip.duration != scene_dur:
if src_clip.duration > scene_dur:
tmp_clip = src_clip.subclip(0, scene_dur)
else:
if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1:
tmp_clip = src_clip.loop(duration=scene_dur)
else:
tmp_clip = src_clip.set_duration(src_clip.duration)
logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur)
if current_scene_mvpy_clip.size != list(self.video_frame_size):
current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e:
logger.error(f"S{scene_num} Video load error '{asset_path}':{e}", exc_info=True)
continue
finally:
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, 'close'):
src_clip.close()
else:
logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.")
continue
if current_scene_mvpy_clip and key_action:
try:
to_dur = min(current_scene_mvpy_clip.duration - 0.5, current_scene_mvpy_clip.duration * 0.8) if current_scene_mvpy_clip.duration > 0.5 else current_scene_mvpy_clip.duration
to_start = 0.25
txt_c = TextClip(
f"Scene {scene_num}\n{key_action}",
fontsize=self.video_overlay_font_size,
color=self.video_overlay_font_color,
font=self.video_overlay_font,
bg_color='rgba(10,10,20,0.7)',
method='caption',
align='West',
size=(self.video_frame_size[0] * 0.9, None),
kerning=-1,
stroke_color='black',
stroke_width=1.5
).set_duration(to_dur).set_start(to_start).set_position(('center', 0.92), relative=True)
current_scene_mvpy_clip = CompositeVideoClip(
[current_scene_mvpy_clip, txt_c],
size=self.video_frame_size,
use_bgclip=True
)
except Exception as e:
logger.error(f"S{scene_num} TextClip error:{e}. No text.", exc_info=True)
if current_scene_mvpy_clip:
processed_clips.append(current_scene_mvpy_clip)
logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e:
logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}", exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, 'close'):
try:
current_scene_mvpy_clip.close()
except:
pass
if not processed_clips:
logger.warning("No clips processed. Abort.")
return None
td = 0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.")
if len(processed_clips) > 1:
final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose")
elif processed_clips:
final_clip = processed_clips[0]
if not final_clip:
logger.error("Concatenation failed.")
return None
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
if td > 0 and final_clip.duration > 0:
if final_clip.duration > td * 2:
final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td)
else:
final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0:
try:
narration_clip = AudioFileClip(overall_narration_path)
final_clip = final_clip.set_audio(narration_clip)
logger.info("Narration added.")
except Exception as e:
logger.error(f"Narration add error:{e}", exc_info=True)
elif final_clip.duration <= 0:
logger.warning("Video no duration. No audio.")
if final_clip and final_clip.duration > 0:
op = os.path.join(self.output_dir, output_filename)
logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
final_clip.write_videofile(
op,
fps=fps,
codec='libx264',
preset='medium',
audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True,
threads=os.cpu_count() or 2,
logger='bar',
bitrate="5000k",
ffmpeg_params=["-pix_fmt", "yuv420p"]
)
logger.info(f"Video created:{op}")
return op
else:
logger.error("Final clip invalid. No write.")
return None
except Exception as e:
logger.error(f"Video write error:{e}", exc_info=True)
return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
for clip_obj in clips_to_close:
if clip_obj and hasattr(clip_obj, 'close'):
try:
clip_obj.close()
except Exception as e_close:
logger.warning(f"Ignoring error while closing a clip: {e_close}")
|