File size: 31,398 Bytes
e22eb13
e0b9b11
62838f2
 
cd8e0e1
 
 
 
62838f2
cd8e0e1
 
62838f2
 
b6860f8
 
b1b7840
62838f2
 
 
 
 
 
 
 
b1b7840
e22eb13
62838f2
e22eb13
62838f2
cd8e0e1
f13d4b2
5089920
f13d4b2
cd8e0e1
 
 
b1b7840
62838f2
cd8e0e1
5089920
62838f2
cd8e0e1
 
4c2220b
f13d4b2
287c9ca
62838f2
e0b9b11
 
62838f2
55ef0ff
62838f2
b6860f8
 
cd8e0e1
b6860f8
55ef0ff
62838f2
 
 
 
 
b1b7840
62838f2
cd8e0e1
 
 
 
55ef0ff
cd8e0e1
 
d44d308
cd8e0e1
55ef0ff
cd8e0e1
 
 
 
200c5c4
09d5c67
cd8e0e1
 
 
 
d44d308
cd8e0e1
 
 
 
62838f2
 
cd8e0e1
 
 
 
 
b1b7840
62838f2
 
cd8e0e1
55ef0ff
62838f2
cd8e0e1
62838f2
 
 
 
cd8e0e1
 
55ef0ff
 
cd8e0e1
 
 
 
 
62838f2
cd8e0e1
 
55ef0ff
cd8e0e1
62838f2
 
 
b6860f8
cd8e0e1
62838f2
cd8e0e1
 
55ef0ff
cd8e0e1
 
 
 
 
 
 
 
62838f2
cd8e0e1
 
 
 
 
 
55ef0ff
cd8e0e1
 
b1b7840
 
cd8e0e1
b1b7840
 
62838f2
b6860f8
b1b7840
 
62838f2
b1b7840
 
b6860f8
b1b7840
 
 
 
62838f2
 
b1b7840
 
62838f2
 
 
 
 
 
b1b7840
 
62838f2
b1b7840
cd8e0e1
 
 
62838f2
b1b7840
62838f2
cd8e0e1
 
62838f2
cd8e0e1
62838f2
b6860f8
62838f2
cd8e0e1
62838f2
 
b6860f8
cd8e0e1
62838f2
cd8e0e1
 
 
62838f2
cd8e0e1
 
 
62838f2
cd8e0e1
b6860f8
 
 
cd8e0e1
b1b7840
cd8e0e1
 
 
 
 
 
 
 
 
 
 
 
 
 
b6860f8
 
b1b7840
b6860f8
b1b7840
5089920
b6860f8
 
 
 
 
e22eb13
b6860f8
 
 
62838f2
cd8e0e1
cb93f9c
62838f2
cd8e0e1
610a011
4da81e5
b6860f8
62838f2
 
 
b6860f8
62838f2
cd8e0e1
 
 
 
 
 
 
62838f2
cd8e0e1
62838f2
cd8e0e1
 
 
 
62838f2
cd8e0e1
62838f2
cd8e0e1
 
b1b7840
62838f2
 
 
cd8e0e1
 
 
 
4da81e5
62838f2
cd8e0e1
b1b7840
cd8e0e1
 
 
 
 
b1b7840
62838f2
cd8e0e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1b7840
b6860f8
cd8e0e1
 
cb93f9c
610a011
 
cd8e0e1
 
b6860f8
610a011
cd8e0e1
 
610a011
 
8583908
62838f2
cd8e0e1
62838f2
cd8e0e1
 
 
 
 
 
 
b6860f8
cd8e0e1
 
 
610a011
cd8e0e1
 
610a011
62838f2
cd8e0e1
3313da9
cd8e0e1
 
 
 
cb93f9c
cd8e0e1
 
 
 
 
59af6e7
cd8e0e1
 
610a011
59af6e7
cd8e0e1
 
 
 
 
 
 
cb93f9c
cd8e0e1
 
 
b1b7840
cd8e0e1
 
b97795f
cd8e0e1
 
 
 
610a011
cd8e0e1
 
 
 
 
 
 
 
 
 
 
 
 
754c854
b6860f8
 
62838f2
 
cd8e0e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'): # Pillow 8
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'):
             print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---

from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_eleven: logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")

# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False; RunwayMLClient = None
try:
    logger.info("RunwayML SDK import is a placeholder.")
except ImportError: logger.warning("RunwayML SDK (placeholder) not found. RunwayML disabled.")
except Exception as e_runway_sdk: logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML disabled.")


class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        self.font_filename = "DejaVuSans-Bold.ttf"
        font_paths_to_try = [
            self.font_filename,
            f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
            f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
            f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf",
            f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"
        ]
        self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
        self.font_size_pil = 20
        self.video_overlay_font_size = 30
        self.video_overlay_font_color = 'white'
        self.video_overlay_font = 'DejaVu-Sans-Bold'

        try:
            self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
            if self.font_path_pil: logger.info(f"Pillow font loaded: {self.font_path_pil}.")
            else: logger.warning("Using default Pillow font."); self.font_size_pil = 10
        except IOError as e_font: logger.error(f"Pillow font loading IOError: {e_font}. Using default."); self.font = ImageFont.load_default(); self.font_size_pil = 10

        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
        self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)
        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None
        self.elevenlabs_voice_id = default_elevenlabs_voice_id
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings = None
        self.pexels_api_key = None; self.USE_PEXELS = False
        self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_client = None
        logger.info("VisualEngine initialized.")

    def set_openai_api_key(self,k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
    def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
        self.elevenlabs_api_key=api_key
        if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS=bool(self.elevenlabs_client); logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
            except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
        else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
    def set_pexels_api_key(self,k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
    def set_runway_api_key(self, k):
        self.runway_api_key = k
        if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient: # This SDK part is still hypothetical
            try: self.USE_RUNWAYML = True; logger.info(f"RunwayML Client (Placeholder SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
            except Exception as e: logger.error(f"RunwayML client (Placeholder SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
        elif k: self.USE_RUNWAYML = True; logger.info("RunwayML API Key set (direct API or placeholder).")
        else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")

    def _get_text_dimensions(self, text_content, font_obj):
        default_line_height = getattr(font_obj, 'size', self.font_size_pil)
        if not text_content: return 0, default_line_height
        try:
            if hasattr(font_obj, 'getbbox'):
                bbox = font_obj.getbbox(text_content); width = bbox[2] - bbox[0]; height = bbox[3] - bbox[1]
                return width, height if height > 0 else default_line_height
            elif hasattr(font_obj, 'getsize'):
                width, height = font_obj.getsize(text_content)
                return width, height if height > 0 else default_line_height
            else: return int(len(text_content) * default_line_height * 0.6), int(default_line_height * 1.2)
        except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content) * self.font_size_pil * 0.6),int(self.font_size_pil * 1.2)

    def _create_placeholder_image_content(self, text_description, filename, size=None):
        if size is None: size = self.video_frame_size
        img = Image.new('RGB', size, color=(20, 20, 40)); draw = ImageDraw.Draw(img)
        padding = 25; max_text_width = size[0] - (2 * padding); lines = []
        if not text_description: text_description = "(Placeholder: No text description provided)"
        words = text_description.split(); current_line = ""
        for word in words:
            test_line = current_line + word + " "; line_width_test, _ = self._get_text_dimensions(test_line.strip(), self.font)
            if line_width_test <= max_text_width: current_line = test_line
            else:
                if current_line.strip(): lines.append(current_line.strip())
                word_width, _ = self._get_text_dimensions(word, self.font)
                if word_width > max_text_width:
                    avg_char_w = self._get_text_dimensions("A", self.font)[0] or 10
                    chars_that_fit = int(max_text_width / avg_char_w) if avg_char_w > 0 else 10
                    lines.append(word[:chars_that_fit-3] + "..." if len(word) > chars_that_fit else word)
                    current_line = ""
                else: current_line = word + " "
        if current_line.strip(): lines.append(current_line.strip())
        if not lines and text_description:
            avg_char_w = self._get_text_dimensions("A", self.font)[0] or 10; chars_that_fit = int(max_text_width / avg_char_w) if avg_char_w > 0 else 10
            lines.append(text_description[:chars_that_fit-3] + "..." if len(text_description) > chars_that_fit else text_description)
        elif not lines: lines.append("(Placeholder Text Error)")
        _, single_line_height = self._get_text_dimensions("Ay", self.font); single_line_height = single_line_height if single_line_height > 0 else (self.font_size_pil + 2)
        line_spacing = 2; max_lines_to_display = min(len(lines), (size[1]-(2*padding))//(single_line_height+line_spacing)) if single_line_height > 0 else 1
        if max_lines_to_display <= 0: max_lines_to_display = 1
        total_text_block_height = max_lines_to_display * single_line_height + (max_lines_to_display-1)*line_spacing
        y_text_start = padding + (size[1]-(2*padding)-total_text_block_height)/2.0; current_y = y_text_start
        for i in range(max_lines_to_display):
            line_content = lines[i]; line_width_actual, _ = self._get_text_dimensions(line_content, self.font)
            x_text = max(padding, (size[0]-line_width_actual)/2.0)
            draw.text((x_text, current_y), line_content, font=self.font, fill=(200,200,180)); current_y += single_line_height + line_spacing
            if i==6 and max_lines_to_display > 7 and len(lines) > max_lines_to_display:
                ellipsis_width, _ = self._get_text_dimensions("...",self.font); x_ellipsis = max(padding, (size[0]-ellipsis_width)/2.0)
                draw.text((x_ellipsis, current_y), "...", font=self.font, fill=(200,200,180)); break
        filepath = os.path.join(self.output_dir, filename)
        try: img.save(filepath); return filepath
        except Exception as e: logger.error(f"Error saving placeholder image {filepath}: {e}", exc_info=True); return None

    def _search_pexels_image(self, query, output_filename_base):
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        headers = {"Authorization": self.pexels_api_key}
        params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
        base_name, _ = os.path.splitext(output_filename_base)
        pexels_filename = base_name + f"_pexels_{random.randint(1000,9999)}.jpg"
        filepath = os.path.join(self.output_dir, pexels_filename)
        try:
            logger.info(f"Pexels search: '{query}'")
            effective_query = " ".join(query.split()[:5])
            params["query"] = effective_query
            response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
            response.raise_for_status()
            data = response.json()
            if data.get("photos") and len(data["photos"]) > 0:
                photo_details = data["photos"][0]
                photo_url = photo_details["src"]["large2x"]
                logger.info(f"Downloading Pexels image from: {photo_url}")
                image_response = requests.get(photo_url, timeout=60)
                image_response.raise_for_status()
                img_data = Image.open(io.BytesIO(image_response.content))
                if img_data.mode != 'RGB':
                    logger.debug(f"Pexels image mode is {img_data.mode}, converting to RGB.")
                    img_data = img_data.convert('RGB')
                img_data.save(filepath)
                logger.info(f"Pexels image saved successfully: {filepath}")
                return filepath
            else:
                logger.info(f"No photos found on Pexels for query: '{effective_query}'")
                return None
        except requests.exceptions.RequestException as e_req: logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True)
        except json.JSONDecodeError as e_json: logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True)
        except Exception as e: logger.error(f"General Pexels error for query '{query}': {e}", exc_info=True)
        return None

    def _generate_video_clip_with_runwayml(self, pt, iip, sifnb, tds=5):
        if not self.USE_RUNWAYML or not self.runway_api_key: logger.warning("RunwayML disabled."); return None
        if not iip or not os.path.exists(iip): logger.error(f"Runway Gen-4 needs input image. Path invalid: {iip}"); return None
        runway_dur = 10 if tds > 7 else 5
        ovfn = sifnb.replace(".png", f"_runway_gen4_d{runway_dur}s.mp4") # sifnb should be base name
        ovfp = os.path.join(self.output_dir, ovfn)
        logger.info(f"Runway Gen-4 (Placeholder) img: {os.path.basename(iip)}, motion: '{pt[:100]}...', dur: {runway_dur}s")
        logger.warning("Using PLACEHOLDER video for Runway Gen-4.")
        img_clip=None; txt_c=None; final_ph_clip=None
        try:
            img_clip = ImageClip(iip).set_duration(runway_dur)
            txt = f"Runway Gen-4 Placeholder\nInput: {os.path.basename(iip)}\nMotion: {pt[:50]}..."
            txt_c = TextClip(txt, fontsize=24,color='white',font=self.video_overlay_font,bg_color='rgba(0,0,0,0.5)',size=(self.video_frame_size[0]*0.8,None),method='caption').set_duration(runway_dur).set_position('center')
            final_ph_clip = CompositeVideoClip([img_clip, txt_c], size=img_clip.size)
            final_ph_clip.write_videofile(ovfp,fps=24,codec='libx264',preset='ultrafast',logger=None,threads=2)
            logger.info(f"Runway Gen-4 placeholder video: {ovfp}"); return ovfp
        except Exception as e: logger.error(f"Runway Gen-4 placeholder error: {e}",exc_info=True); return None
        finally:
            if img_clip and hasattr(img_clip,'close'): img_clip.close()
            if txt_c and hasattr(txt_c,'close'): txt_c.close()
            if final_ph_clip and hasattr(final_ph_clip,'close'): final_ph_clip.close()

    def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None): # Generic placeholder
        if size is None:
            size = self.video_frame_size
        filepath = os.path.join(self.output_dir, filename)
        txt_clip = None # Initialize for finally block
        try:
            txt_clip = TextClip(text_description,
                                fontsize=50,
                                color='white',
                                font=self.video_overlay_font,
                                bg_color='black',
                                size=size,
                                method='caption').set_duration(duration)
            
            txt_clip.write_videofile(filepath,
                                     fps=24,
                                     codec='libx264',
                                     preset='ultrafast',
                                     logger=None,
                                     threads=2)
            logger.info(f"Generic placeholder video created successfully: {filepath}")
            return filepath
        except Exception as e:
            logger.error(f"Failed to create generic placeholder video {filepath}: {e}", exc_info=True)
            return None
        finally:
            if txt_clip and hasattr(txt_clip, 'close'):
                try:
                    txt_clip.close()
                except Exception as e_close:
                    logger.warning(f"Error closing TextClip in _create_placeholder_video_content: {e_close}")

    def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
                             scene_data, scene_identifier_filename_base,
                             generate_as_video_clip=False, runway_target_duration=5):
        base_name = scene_identifier_filename_base
        asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Generation not attempted'}
        input_image_for_runway_path = None
        image_filename_for_base = base_name + "_base_image.png"
        temp_image_asset_info = {'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Base image generation not attempted'}

        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_r, att_n = 2, 0
            for att_n in range(max_r):
                try:
                    img_fp_dalle = os.path.join(self.output_dir, image_filename_for_base)
                    logger.info(f"Attempt {att_n+1} DALL-E (base img): {image_generation_prompt_text[:100]}...")
                    cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
                    r = cl.images.generate(model=self.dalle_model, prompt=image_generation_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
                    iu = r.data[0].url; rp = getattr(r.data[0], 'revised_prompt', None)
                    if rp: logger.info(f"DALL-E revised: {rp[:100]}...")
                    ir = requests.get(iu, timeout=120); ir.raise_for_status()
                    id_img = Image.open(io.BytesIO(ir.content));
                    if id_img.mode != 'RGB': id_img = id_img.convert('RGB')
                    id_img.save(img_fp_dalle); logger.info(f"DALL-E base image: {img_fp_dalle}");
                    input_image_for_runway_path = img_fp_dalle
                    temp_image_asset_info = {'path': img_fp_dalle, 'type': 'image', 'error': False, 'prompt_used': image_generation_prompt_text, 'revised_prompt': rp}
                    break
                except openai.RateLimitError as e: logger.warning(f"OpenAI Rate Limit {att_n+1}: {e}. Retry..."); time.sleep(5*(att_n+1)); temp_image_asset_info['error_message']=str(e)
                except Exception as e: logger.error(f"DALL-E error: {e}", exc_info=True); temp_image_asset_info['error_message']=str(e); break
            if temp_image_asset_info['error']: logger.warning(f"DALL-E failed after {att_n+1} attempts for base image.")
        
        if temp_image_asset_info['error'] and self.USE_PEXELS:
            pqt = scene_data.get('pexels_search_query_๊ฐ๋…', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
            pp = self._search_pexels_image(pqt, image_filename_for_base)
            if pp: input_image_for_runway_path = pp; temp_image_asset_info = {'path': pp, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pqt}"}
            else: current_em = temp_image_asset_info.get('error_message',""); temp_image_asset_info['error_message']=(current_em + " Pexels failed.").strip()

        if temp_image_asset_info['error']:
            logger.warning("Base image (DALL-E/Pexels) failed. Placeholder base image.")
            ppt = temp_image_asset_info.get('prompt_used', image_generation_prompt_text)
            php = self._create_placeholder_image_content(f"[Base Img Placeholder] {ppt[:100]}...", image_filename_for_base) # Use image_filename_for_base
            if php: input_image_for_runway_path = php; temp_image_asset_info = {'path': php, 'type': 'image', 'error': False, 'prompt_used': ppt}
            else: current_em=temp_image_asset_info.get('error_message',"");temp_image_asset_info['error_message']=(current_em + " Base placeholder failed.").strip()
        
        if generate_as_video_clip:
            if self.USE_RUNWAYML and input_image_for_runway_path:
                video_path = self._generate_video_clip_with_runwayml(motion_prompt_text_for_video, input_image_for_runway_path, base_name, runway_target_duration)
                if video_path and os.path.exists(video_path):
                    return {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': motion_prompt_text_for_video, 'base_image_path': input_image_for_runway_path}
                else: asset_info = temp_image_asset_info; asset_info['error'] = True; asset_info['error_message'] = "RunwayML video gen failed; using base image."; asset_info['type'] = 'image'; return asset_info
            elif not self.USE_RUNWAYML: asset_info = temp_image_asset_info; asset_info['error_message'] = "RunwayML disabled; using base image."; asset_info['type'] = 'image'; return asset_info
            else: asset_info = temp_image_asset_info; asset_info['error_message'] = (asset_info.get('error_message',"") + " Base image failed, Runway video not attempted.").strip(); asset_info['type'] = 'image'; return asset_info
        else: return temp_image_asset_info

    def generate_narration_audio(self, ttn, ofn="narration_overall.mp3"):
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not ttn: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,ofn)
        try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {ttn[:70]}..."); asm=None
        if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
        elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
        elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=ttn,voice=vp,model="eleven_multilingual_v2");
        with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
        else:logger.error("No 11L audio method.");return None
        if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
        if self.elevenlabs_voice_settings:
            if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
            elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
            else:vps["voice_settings"]=self.elevenlabs_voice_settings
        adi=asm(text=ttn,model_id="eleven_multilingual_v2",**vps)
        with open(afp,"wb")as f:
            for c in adi:
                if c:f.write(c)
        logger.info(f"11L audio (stream): {afp}");return afp
        except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None

    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        if not asset_data_list: logger.warning("No assets for animatic."); return None
        processed_clips = []; narration_clip = None; final_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")

        for i, asset_info in enumerate(asset_data_list):
            asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
            scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
            logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")

            if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
            if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue

            current_scene_mvpy_clip = None
            try:
                if asset_type == 'image':
                    pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
                    img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
                    thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
                    cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
                    cv_rgba.paste(thumb,(xo,yo),thumb)
                    final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
                    dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
                    frame_np = np.array(final_rgb_pil,dtype=np.uint8);
                    if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
                    logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
                    if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
                    clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
                    mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
                    clip_fx = clip_base
                    try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
                    except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
                    current_scene_mvpy_clip = clip_fx
                elif asset_type == 'video':
                    src_clip=None
                    try:
                        src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
                        tmp_clip=src_clip
                        if src_clip.duration!=scene_dur:
                            if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
                            else:
                                if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
                                else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
                        current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur)
                        if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
                    except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
                    finally:
                        if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
                else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
                if current_scene_mvpy_clip and key_action:
                    try:
                        to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
                        to_start=0.25
                        txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
                        current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
                    except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
                if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
            except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
            finally:
                if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
                    try: current_scene_mvpy_clip.close()
                    except: pass

        if not processed_clips:logger.warning("No clips processed. Abort.");return None
        td=0.75
        try:
            logger.info(f"Concatenating {len(processed_clips)} clips.");
            if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
            elif processed_clips:final_clip=processed_clips[0]
            if not final_clip:logger.error("Concatenation failed.");return None
            logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
            if td>0 and final_clip.duration>0:
                if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
                else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
            if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
                try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
                except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
            elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
            if final_clip and final_clip.duration>0:
                op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
                final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
                logger.info(f"Video created:{op}");return op
            else:logger.error("Final clip invalid. No write.");return None
        except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
            clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
            for clip_obj in clips_to_close:
                if clip_obj and hasattr(clip_obj, 'close'):
                    try: clip_obj.close()
                    except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {e_close}")