File size: 30,630 Bytes
8a6537e de2fdbb 8a6537e 857e0f9 de2fdbb 972ddb9 8a6537e de2fdbb 8a6537e e20b484 8a6537e 1813b8c 8a6537e 1813b8c 8a6537e 1813b8c 8a6537e a7374a3 8a6537e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'): # Pillow 8
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'):
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
# --- END MONKEY PATCH ---
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- ElevenLabs Client Import ---
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_eleven: logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
# --- RunwayML Client Import (Placeholder) ---
RUNWAYML_SDK_IMPORTED = False; RunwayMLClient = None
try:
logger.info("RunwayML SDK import is a placeholder.")
except ImportError: logger.warning("RunwayML SDK (placeholder) not found. RunwayML disabled.")
except Exception as e_runway_sdk: logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "DejaVuSans-Bold.ttf"
font_paths_to_try = [
self.font_filename,
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf",
f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"
]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'DejaVu-Sans-Bold'
try:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
if self.font_path_pil: logger.info(f"Pillow font loaded: {self.font_path_pil}.")
else: logger.warning("Using default Pillow font."); self.font_size_pil = 10
except IOError as e_font: logger.error(f"Pillow font loading IOError: {e_font}. Using default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_client = None
logger.info("VisualEngine initialized.")
def set_openai_api_key(self,k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
self.elevenlabs_api_key=api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS=bool(self.elevenlabs_client); logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
def set_pexels_api_key(self,k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k):
self.runway_api_key = k
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
try: self.USE_RUNWAYML = True; logger.info(f"RunwayML Client (Placeholder SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
except Exception as e: logger.error(f"RunwayML client (Placeholder SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
elif k: self.USE_RUNWAYML = True; logger.info("RunwayML API Key set (direct API or placeholder).")
else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
def _get_text_dimensions(self, text_content, font_obj):
default_line_height = getattr(font_obj, 'size', self.font_size_pil)
if not text_content: return 0, default_line_height
try:
if hasattr(font_obj, 'getbbox'):
bbox = font_obj.getbbox(text_content); width = bbox[2] - bbox[0]; height = bbox[3] - bbox[1]
return width, height if height > 0 else default_line_height
elif hasattr(font_obj, 'getsize'):
width, height = font_obj.getsize(text_content)
return width, height if height > 0 else default_line_height
else: return int(len(text_content) * default_line_height * 0.6), int(default_line_height * 1.2)
except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content) * self.font_size_pil * 0.6),int(self.font_size_pil * 1.2)
def _create_placeholder_image_content(self, text_description, filename, size=None):
if size is None: size = self.video_frame_size
img = Image.new('RGB', size, color=(20, 20, 40)); draw = ImageDraw.Draw(img)
padding = 25; max_text_width = size[0] - (2 * padding); lines = []
if not text_description: text_description = "(Placeholder: No text description provided)"
words = text_description.split(); current_line = ""
for word in words:
test_line = current_line + word + " "; line_width_test, _ = self._get_text_dimensions(test_line.strip(), self.font)
if line_width_test <= max_text_width: current_line = test_line
else:
if current_line.strip(): lines.append(current_line.strip())
word_width, _ = self._get_text_dimensions(word, self.font)
if word_width > max_text_width:
avg_char_w = self._get_text_dimensions("A", self.font)[0] or 10
chars_that_fit = int(max_text_width / avg_char_w)
lines.append(word[:chars_that_fit-3] + "..." if len(word) > chars_that_fit else word) # Corrected line
current_line = ""
else: current_line = word + " "
if current_line.strip(): lines.append(current_line.strip())
if not lines and text_description:
avg_char_w = self._get_text_dimensions("A", self.font)[0] or 10; chars_that_fit = int(max_text_width / avg_char_w)
lines.append(text_description[:chars_that_fit-3] + "..." if len(text_description) > chars_that_fit else text_description)
elif not lines: lines.append("(Placeholder Text Error)")
_, single_line_height = self._get_text_dimensions("Ay", self.font); single_line_height = single_line_height if single_line_height > 0 else (self.font_size_pil + 2)
line_spacing = 2; max_lines_to_display = min(len(lines), (size[1]-(2*padding))//(single_line_height+line_spacing)) if single_line_height > 0 else 1
if max_lines_to_display <= 0: max_lines_to_display = 1
total_text_block_height = max_lines_to_display * single_line_height + (max_lines_to_display-1)*line_spacing
y_text_start = padding + (size[1]-(2*padding)-total_text_block_height)/2.0; current_y = y_text_start
for i in range(max_lines_to_display):
line_content = lines[i]; line_width_actual, _ = self._get_text_dimensions(line_content, self.font)
x_text = max(padding, (size[0]-line_width_actual)/2.0)
draw.text((x_text, current_y), line_content, font=self.font, fill=(200,200,180)); current_y += single_line_height + line_spacing
if i==6 and max_lines_to_display > 7 and len(lines) > max_lines_to_display:
ellipsis_width, _ = self._get_text_dimensions("...",self.font); x_ellipsis = max(padding, (size[0]-ellipsis_width)/2.0)
draw.text((x_ellipsis, current_y), "...", font=self.font, fill=(200,200,180)); break
filepath = os.path.join(self.output_dir, filename)
try: img.save(filepath); return filepath
except Exception as e: logger.error(f"Error saving placeholder image {filepath}: {e}", exc_info=True); return None
def _search_pexels_image(self, query, output_filename_base):
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
base_name, _ = os.path.splitext(output_filename_base)
pexels_filename = base_name + f"_pexels_{random.randint(1000,9999)}.jpg" # Use base_name
filepath = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Pexels search: '{query}'")
effective_query = " ".join(query.split()[:5])
params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status()
data = response.json() # This line and subsequent ones are now correctly in the try block
if data.get("photos") and len(data["photos"]) > 0:
photo_details = data["photos"][0]
photo_url = photo_details["src"]["large2x"]
logger.info(f"Downloading Pexels image from: {photo_url}")
image_response = requests.get(photo_url, timeout=60)
image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB':
logger.debug(f"Pexels image mode is {img_data.mode}, converting to RGB.")
img_data = img_data.convert('RGB')
img_data.save(filepath)
logger.info(f"Pexels image saved successfully: {filepath}")
return filepath
else:
logger.info(f"No photos found on Pexels for query: '{effective_query}'")
return None
except requests.exceptions.RequestException as e_req: logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True)
except json.JSONDecodeError as e_json: logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True)
except Exception as e: logger.error(f"General Pexels error for query '{query}': {e}", exc_info=True)
return None
def _generate_video_clip_with_runwayml(self, pt, iip, sifnb, tds=5): # Renamed for clarity
if not self.USE_RUNWAYML or not self.runway_api_key: logger.warning("RunwayML disabled."); return None
if not iip or not os.path.exists(iip): logger.error(f"Runway Gen-4 needs input image. Path invalid: {iip}"); return None
runway_dur = 10 if tds > 7 else 5
ovfn = sifnb.replace(".png", f"_runway_gen4_d{runway_dur}s.mp4") # sifnb should be base name
ovfp = os.path.join(self.output_dir, ovfn)
logger.info(f"Runway Gen-4 (Placeholder) img: {os.path.basename(iip)}, motion: '{pt[:100]}...', dur: {runway_dur}s")
logger.warning("Using PLACEHOLDER video for Runway Gen-4.")
img_clip=None; txt_c=None; final_ph_clip=None
try:
img_clip = ImageClip(iip).set_duration(runway_dur)
txt = f"Runway Gen-4 Placeholder\nInput: {os.path.basename(iip)}\nMotion: {pt[:50]}..."
txt_c = TextClip(txt, fontsize=24,color='white',font=self.video_overlay_font,bg_color='rgba(0,0,0,0.5)',size=(self.video_frame_size[0]*0.8,None),method='caption').set_duration(runway_dur).set_position('center')
final_ph_clip = CompositeVideoClip([img_clip, txt_c], size=img_clip.size)
final_ph_clip.write_videofile(ovfp,fps=24,codec='libx264',preset='ultrafast',logger=None,threads=2)
logger.info(f"Runway Gen-4 placeholder video: {ovfp}"); return ovfp
except Exception as e: logger.error(f"Runway Gen-4 placeholder error: {e}",exc_info=True); return None
finally:
if img_clip and hasattr(img_clip,'close'): img_clip.close()
if txt_c and hasattr(txt_c,'close'): txt_c.close()
if final_ph_clip and hasattr(final_ph_clip,'close'): final_ph_clip.close()
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None):
if sz is None: sz = self.video_frame_size; fp = os.path.join(self.output_dir, fn); tc = None
try: tc = TextClip(td, fontsize=50,color='white',font=self.video_overlay_font,bg_color='black',size=sz,method='caption').set_duration(dur)
tc.write_videofile(fp,fps=24,codec='libx264',preset='ultrafast',logger=None,threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp
except Exception as e: logger.error(f"Generic placeholder error {fp}: {e}",exc_info=True); return None
finally:
if tc and hasattr(tc,'close'): tc.close()
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
scene_data, scene_identifier_filename_base, # This is base_name, no ext
generate_as_video_clip=False, runway_target_duration=5):
base_name = scene_identifier_filename_base # Already a base name
asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Generation not attempted'}
input_image_for_runway_path = None
image_filename_for_base = base_name + "_base_image.png" # Specific name for base image file
temp_image_asset_info = {'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Base image generation not attempted'}
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_r, att_n = 2, 0
for att_n in range(max_r):
try:
img_fp_dalle = os.path.join(self.output_dir, image_filename_for_base)
logger.info(f"Attempt {att_n+1} DALL-E (base img): {image_generation_prompt_text[:100]}...")
cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
r = cl.images.generate(model=self.dalle_model, prompt=image_generation_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
iu = r.data[0].url; rp = getattr(r.data[0], 'revised_prompt', None)
if rp: logger.info(f"DALL-E revised: {rp[:100]}...")
ir = requests.get(iu, timeout=120); ir.raise_for_status()
id_img = Image.open(io.BytesIO(ir.content));
if id_img.mode != 'RGB': id_img = id_img.convert('RGB')
id_img.save(img_fp_dalle); logger.info(f"DALL-E base image: {img_fp_dalle}");
input_image_for_runway_path = img_fp_dalle
temp_image_asset_info = {'path': img_fp_dalle, 'type': 'image', 'error': False, 'prompt_used': image_generation_prompt_text, 'revised_prompt': rp}
break
except openai.RateLimitError as e: logger.warning(f"OpenAI Rate Limit {att_n+1}: {e}. Retry..."); time.sleep(5*(att_n+1)); temp_image_asset_info['error_message']=str(e)
except Exception as e: logger.error(f"DALL-E error: {e}", exc_info=True); temp_image_asset_info['error_message']=str(e); break
if temp_image_asset_info['error']: logger.warning(f"DALL-E failed after {att_n+1} attempts for base image.")
if temp_image_asset_info['error'] and self.USE_PEXELS:
pqt = scene_data.get('pexels_search_query_๊ฐ๋
', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pp = self._search_pexels_image(pqt, image_filename_for_base) # Use base name for pexels
if pp: input_image_for_runway_path = pp; temp_image_asset_info = {'path': pp, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pqt}"}
else: current_em = temp_image_asset_info.get('error_message',""); temp_image_asset_info['error_message']=(current_em + " Pexels failed.").strip()
if temp_image_asset_info['error']:
logger.warning("Base image (DALL-E/Pexels) failed. Placeholder base image.")
ppt = temp_image_asset_info.get('prompt_used', image_generation_prompt_text)
php = self._create_placeholder_image_content(f"[Base Img Placeholder] {ppt[:100]}...", image_filename_for_base)
if php: input_image_for_runway_path = php; temp_image_asset_info = {'path': php, 'type': 'image', 'error': False, 'prompt_used': ppt}
else: current_em=temp_image_asset_info.get('error_message',"");temp_image_asset_info['error_message']=(current_em + " Base placeholder failed.").strip()
if generate_as_video_clip:
if self.USE_RUNWAYML and input_image_for_runway_path:
video_path = self._generate_video_clip_with_runwayml(motion_prompt_text_for_video, input_image_for_runway_path, base_name, runway_target_duration) # Pass base_name
if video_path and os.path.exists(video_path):
return {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': motion_prompt_text_for_video, 'base_image_path': input_image_for_runway_path}
else: asset_info = temp_image_asset_info; asset_info['error'] = True; asset_info['error_message'] = "RunwayML video gen failed; using base image."; asset_info['type'] = 'image'; return asset_info
elif not self.USE_RUNWAYML: asset_info = temp_image_asset_info; asset_info['error_message'] = "RunwayML disabled; using base image."; asset_info['type'] = 'image'; return asset_info
else: asset_info = temp_image_asset_info; asset_info['error_message'] = (asset_info.get('error_message',"") + " Base image failed, Runway video not attempted.").strip(); asset_info['type'] = 'image'; return asset_info
else: return temp_image_asset_info
def generate_narration_audio(self, ttn, ofn="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not ttn: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,ofn)
try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {ttn[:70]}..."); asm=None
if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=ttn,voice=vp,model="eleven_multilingual_v2");
with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
else:logger.error("No 11L audio method.");return None
if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
else:vps["voice_settings"]=self.elevenlabs_voice_settings
adi=asm(text=ttn,model_id="eleven_multilingual_v2",**vps)
with open(afp,"wb")as f:
for c in adi:
if c:f.write(c)
logger.info(f"11L audio (stream): {afp}");return afp
except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
if not asset_data_list: logger.warning("No assets for animatic."); return None
processed_clips = []; narration_clip = None; final_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue
current_scene_mvpy_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
cv_rgba.paste(thumb,(xo,yo),thumb)
final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
frame_np = np.array(final_rgb_pil,dtype=np.uint8);
if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
clip_fx = clip_base
try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
current_scene_mvpy_clip = clip_fx
elif asset_type == 'video':
src_clip=None
try:
src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
tmp_clip=src_clip
if src_clip.duration!=scene_dur:
if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
else:
if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur)
if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
finally:
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
if current_scene_mvpy_clip and key_action:
try:
to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
to_start=0.25
txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
try: current_scene_mvpy_clip.close()
except: pass
if not processed_clips:logger.warning("No clips processed. Abort.");return None
td=0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.");
if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
elif processed_clips:final_clip=processed_clips[0]
if not final_clip:logger.error("Concatenation failed.");return None
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
if td>0 and final_clip.duration>0:
if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
if final_clip and final_clip.duration>0:
op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
logger.info(f"Video created:{op}");return op
else:logger.error("Final clip invalid. No write.");return None
except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
for clip_obj in clips_to_close:
if clip_obj and hasattr(clip_obj, 'close'):
try: clip_obj.close()
except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {e_close}") |