File size: 18,458 Bytes
287c9ca
9d84ba9
8583908
9840152
9d84ba9
990e23e
287c9ca
8583908
 
 
9840152
5e4272a
f13d4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287c9ca
9d84ba9
f13d4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9840152
f13d4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09d5c67
5e4272a
f13d4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29c2122
 
f13d4b2
 
 
 
50c620f
f13d4b2
 
 
 
 
 
 
 
 
 
5e4272a
f13d4b2
 
 
 
 
 
 
29c2122
f13d4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9840152
 
f13d4b2
 
9840152
 
29c2122
f13d4b2
5e4272a
f13d4b2
 
29c2122
f13d4b2
 
 
9840152
 
29c2122
f13d4b2
 
9840152
b97795f
29c2122
41b47a8
09d5c67
9d84ba9
 
 
 
29c2122
5e4272a
f13d4b2
 
5e4272a
 
 
f13d4b2
5e4272a
 
 
9d84ba9
f13d4b2
5e4272a
f13d4b2
5e4272a
 
 
f13d4b2
 
 
 
 
990e23e
f13d4b2
 
 
29c2122
f13d4b2
9840152
 
5e4272a
 
 
 
f13d4b2
5e4272a
 
 
29c2122
5e4272a
f13d4b2
 
 
 
9840152
 
 
f13d4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9840152
 
5e4272a
f13d4b2
 
 
8583908
 
9d84ba9
29c2122
8583908
29c2122
 
 
 
f13d4b2
29c2122
 
9d84ba9
8583908
f13d4b2
29c2122
 
9d84ba9
29c2122
9d84ba9
29c2122
 
5e4272a
9d84ba9
9840152
9d84ba9
f13d4b2
9d84ba9
f13d4b2
5e4272a
29c2122
 
 
9840152
 
 
 
f13d4b2
 
 
9840152
f13d4b2
 
 
 
8583908
 
b97795f
f13d4b2
 
5e4272a
9d84ba9
f13d4b2
 
 
29c2122
f13d4b2
 
5e4272a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip, 
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx 
import numpy as np
import os
import openai
import requests
import io
import time
import random 
import subprocess # For the dummy video fallback

# --- ElevenLabs Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None # Placeholder for the class
Voice = None               # Placeholder for the class
VoiceSettings = None       # Placeholder for the class

try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient 
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    
    ElevenLabsAPIClient = ImportedElevenLabsClient 
    Voice = ImportedVoice
    VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True
    print("Successfully imported ElevenLabs client components (SDK v1.x.x pattern).")
except ImportError as e_eleven:
    print(f"WARNING: Could not import ElevenLabs client components: {e_eleven}. ElevenLabs audio generation will be disabled.")
except Exception as e_gen_eleven: # Catch any other general import error for elevenlabs
    print(f"WARNING: General error importing ElevenLabs: {e_gen_eleven}. ElevenLabs audio generation will be disabled.")


class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        
        self.font_filename = "arial.ttf" 
        self.font_path_in_container = f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
        self.font_size_pil = 20 
        self.video_overlay_font_size = 30 
        self.video_overlay_font_color = 'white'
        self.video_overlay_font = 'Arial-Bold' 

        try:
            self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil)
            # print(f"Placeholder font loaded: {self.font_path_in_container}.") # Less verbose
        except IOError:
            print(f"Warning: Placeholder font '{self.font_path_in_container}' not loaded. Using default.")
            self.font = ImageFont.load_default()
            self.font_size_pil = 10

        self.openai_api_key = None
        self.USE_AI_IMAGE_GENERATION = False
        self.dalle_model = "dall-e-3" 
        self.image_size_dalle3 = "1792x1024" 
        self.video_frame_size = (1280, 720)

        # ElevenLabs Client
        self.elevenlabs_api_key = None
        self.USE_ELEVENLABS = False
        self.elevenlabs_client = None 
        self.elevenlabs_voice_id = "Rachel" # Default, can be name or ID
        if VoiceSettings: # Check if VoiceSettings was successfully imported
            self.elevenlabs_voice_settings = VoiceSettings(
                stability=0.65, similarity_boost=0.75, 
                style=0.1, use_speaker_boost=True
            )
        else:
            self.elevenlabs_voice_settings = None

        self.pexels_api_key = None
        self.USE_PEXELS = False

    def set_openai_api_key(self,k): 
        self.openai_api_key=k
        self.USE_AI_IMAGE_GENERATION=bool(k)
        # print(f"DALL-E ({self.dalle_model}) {'Ready' if k else 'Disabled'}.")

    def set_elevenlabs_api_key(self,api_key):
        self.elevenlabs_api_key=api_key
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: 
            try: 
                self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key) 
                # Optional: Test client (e.g., fetch voices) can be added here for robust init
                # voices_test = self.elevenlabs_client.voices.get_all() # This makes an API call
                # if voices_test and voices_test.voices: print("ElevenLabs client connected.")
                self.USE_ELEVENLABS=True
                # print("ElevenLabs Client Ready.")
            except Exception as e: 
                print(f"Error initializing ElevenLabs client with API key: {e}. ElevenLabs Disabled."); 
                self.USE_ELEVENLABS=False; self.elevenlabs_client = None
        else: 
            self.USE_ELEVENLABS=False; self.elevenlabs_client = None
            # if not ELEVENLABS_CLIENT_IMPORTED or not ElevenLabsAPIClient:
                # print("ElevenLabs Client class was not imported. ElevenLabs Disabled.") # Already printed at import
            # else:
                # print("ElevenLabs API Key not provided. ElevenLabs Disabled.") # Less verbose
            
    def set_pexels_api_key(self,k):
        self.pexels_api_key=k; self.USE_PEXELS=bool(k)
        # print(f"Pexels {'Ready' if k else 'Disabled'}.")
    
    def _get_text_dimensions(self,text_content,font_obj):
        if not text_content: return 0,self.font_size_pil 
        try:
            if hasattr(font_obj,'getbbox'): 
                bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
                return w, h if h > 0 else self.font_size_pil
            elif hasattr(font_obj,'getsize'): 
                w,h=font_obj.getsize(text_content)
                return w, h if h > 0 else self.font_size_pil
            else: # Fallback
                return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
        except Exception: # Generic fallback on error
            return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
    
    def _create_placeholder_image_content(self,text_description,filename,size=(1280,720)):
        img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
        if not text_description: text_description="(Placeholder: No prompt text)"
        words=text_description.split();current_line=""
        for word in words:
            test_line=current_line+word+" "
            if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
            else:
                if current_line: lines.append(current_line.strip())
                current_line=word+" "
        if current_line: lines.append(current_line.strip())
        if not lines: lines.append("(Text error or too long for placeholder)")

        _,single_line_h=self._get_text_dimensions("Ay",self.font)
        single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
        
        max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) # Max lines based on height
        
        y_text=padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0

        for i in range(max_lines_to_display):
            line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
            d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
            if i==6 and max_lines_to_display > 7: # Show ellipsis if more text
                d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
        filepath=os.path.join(self.output_dir,filename)
        try:img.save(filepath);return filepath
        except Exception as e:print(f"Error saving placeholder image {filepath}: {e}");return None

    def _search_pexels_image(self, query, output_filename_base):
        if not self.USE_PEXELS or not self.pexels_api_key: return None
        headers = {"Authorization": self.pexels_api_key}
        params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"} # Get only 1 relevant image
        pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(100,999)}.jpg")
        filepath = os.path.join(self.output_dir, pexels_filename)
        try:
            print(f"Searching Pexels for: '{query}'")
            effective_query = " ".join(query.split()[:5]) # Use first 5 words for Pexels query
            params["query"] = effective_query

            response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
            response.raise_for_status(); data = response.json()
            if data.get("photos") and len(data["photos"]) > 0:
                photo_url = data["photos"][0]["src"]["large2x"] # High quality
                image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
                img_data = Image.open(io.BytesIO(image_response.content))
                if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                img_data.save(filepath); print(f"Pexels image saved: {filepath}"); return filepath
            else: print(f"No photos found on Pexels for query: '{effective_query}'")
        except Exception as e: print(f"Pexels search/download error for query '{query}': {e}")
        return None

    def generate_image_visual(self, image_prompt_text, scene_data, scene_identifier_filename):
        filepath = os.path.join(self.output_dir, scene_identifier_filename)
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
            max_retries = 2
            for attempt in range(max_retries):
                try:
                    print(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:120]}...")
                    client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
                    response = client.images.generate(
                        model=self.dalle_model, prompt=image_prompt_text, n=1, 
                        size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid"
                    )
                    image_url = response.data[0].url
                    revised_prompt = getattr(response.data[0], 'revised_prompt', None)
                    if revised_prompt: print(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
                    
                    image_response = requests.get(image_url, timeout=120)
                    image_response.raise_for_status()
                    img_data = Image.open(io.BytesIO(image_response.content))
                    if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
                    
                    img_data.save(filepath); print(f"AI Image (DALL-E) saved: {filepath}"); return filepath 
                except openai.RateLimitError as e: 
                    print(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s...")
                    time.sleep(5 * (attempt + 1))
                    if attempt == max_retries - 1: print("Max retries for RateLimitError."); break
                    else: continue
                except openai.APIError as e: print(f"OpenAI API Error: {e}"); break 
                except requests.exceptions.RequestException as e: print(f"Requests Error (DALL-E download): {e}"); break
                except Exception as e: print(f"Generic error (DALL-E gen): {e}"); break
            
            print("DALL-E generation failed. Trying Pexels fallback...")
            pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋…', 
                                             f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
            pexels_path = self._search_pexels_image(pexels_query_text, scene_identifier_filename)
            if pexels_path: return pexels_path
            
            print("Pexels also failed/disabled. Using placeholder.")
            return self._create_placeholder_image_content(
                f"[AI/Pexels Failed] Original Prompt: {image_prompt_text[:100]}...", 
                scene_identifier_filename, size=self.video_frame_size
            )
        else: 
            return self._create_placeholder_image_content(
                image_prompt_text, scene_identifier_filename, size=self.video_frame_size
            )

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
            # print("ElevenLabs not enabled, client not initialized, or no text. Skipping audio.") # Less verbose
            return None
        
        audio_filepath = os.path.join(self.output_dir, output_filename)
        try:
            print(f"Generating ElevenLabs audio (Voice: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
            
            voice_param = self.elevenlabs_voice_id # Default to string ID
            if Voice and self.elevenlabs_voice_settings: # Check if Voice & VoiceSettings were imported
                voice_param = Voice(
                    voice_id=self.elevenlabs_voice_id,
                    settings=self.elevenlabs_voice_settings
                )
            
            audio_data_iterator = self.elevenlabs_client.generate(
                text=text_to_narrate,
                voice=voice_param, 
                model="eleven_multilingual_v2" # Or other models e.g. "eleven_turbo_v2"
            )
            
            with open(audio_filepath, "wb") as f:
                for chunk in audio_data_iterator: 
                    if chunk: f.write(chunk)
            
            print(f"ElevenLabs audio saved: {audio_filepath}")
            return audio_filepath
        except AttributeError as ae:
             print(f"AttributeError with ElevenLabs client (method name like 'generate' might differ): {ae}")
        except Exception as e:
            print(f"Error generating ElevenLabs audio: {e}")
        return None

    def create_video_from_images(self, image_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24, duration_per_image=4.5):
        if not image_data_list: print("No image data for video."); return None
        # print(f"Creating video from {len(image_data_list)} image sets.") # Less verbose
        processed_clips = []; narration_audio_clip = None; final_video_clip_obj = None

        for i, data in enumerate(image_data_list):
            img_path, scene_num, key_action = data.get('path'), data.get('scene_num', i+1), data.get('key_action', '')
            if not (img_path and os.path.exists(img_path)): print(f"Img not found: {img_path}"); continue
            try:
                pil_img = Image.open(img_path); 
                if pil_img.mode != 'RGB': pil_img = pil_img.convert('RGB')
                img_copy = pil_img.copy()
                img_copy.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS)
                canvas = Image.new('RGB', self.video_frame_size, (random.randint(0,10), random.randint(0,10), random.randint(0,10))) 
                xo, yo = (self.video_frame_size[0]-img_copy.width)//2, (self.video_frame_size[1]-img_copy.height)//2
                canvas.paste(img_copy, (xo,yo))
                frame_np = np.array(canvas)
                img_clip = ImageClip(frame_np).set_duration(duration_per_image)
                end_scale = random.uniform(1.05, 1.12) 
                img_clip = img_clip.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / duration_per_image))
                img_clip = img_clip.set_position('center')
                if key_action:
                    txt_clip = TextClip(f"Scene {scene_num}\n{key_action}", fontsize=self.video_overlay_font_size, 
                                        color=self.video_overlay_font_color, font=self.video_overlay_font,
                                        bg_color='rgba(10,10,20,0.75)', method='caption', align='West',
                                        size=(self.video_frame_size[0]*0.9, None), kerning=-1, stroke_color='black', stroke_width=1
                                       ).set_duration(duration_per_image - 1.0).set_start(0.5).set_position(('center', 0.9), relative=True)
                    final_scene_clip = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size)
                else: final_scene_clip = img_clip
                processed_clips.append(final_scene_clip)
            except Exception as e: print(f"Error creating video clip for {img_path}: {e}.")
        
        if not processed_clips: print("No clips processed for video."); return None
        transition = 0.8 
        final_video_clip_obj = concatenate_videoclips(processed_clips, padding=-transition, method="compose")
        if final_video_clip_obj.duration > transition*2: 
            final_video_clip_obj = final_video_clip_obj.fx(vfx.fadein, transition).fx(vfx.fadeout, transition)
        
        if overall_narration_path and os.path.exists(overall_narration_path):
            try:
                narration_audio_clip = AudioFileClip(overall_narration_path)
                current_video_duration = final_video_clip_obj.duration
                # If narration is shorter, trim video. If narration is longer, audio will be cut by video duration.
                if narration_audio_clip.duration < current_video_duration:
                    final_video_clip_obj = final_video_clip_obj.subclip(0, narration_audio_clip.duration)
                
                final_video_clip_obj = final_video_clip_obj.set_audio(narration_audio_clip)
                print("Overall narration added to video.")
            except Exception as e: print(f"Error adding overall narration: {e}.")
        
        output_path = os.path.join(self.output_dir, output_filename)
        try:
            print(f"Writing final video to: {output_path}")
            final_video_clip_obj.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', 
                                        audio_codec='aac',
                                        temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'), 
                                        remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k") # Consider 'medium' preset
            print(f"Video successfully created: {output_path}"); return output_path
        except Exception as e: print(f"Error writing video file: {e}"); return None
        finally:
            for c_item in processed_clips: 
                if hasattr(c_item, 'close'): c_item.close()
            if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
            if final_video_clip_obj and hasattr(final_video_clip_obj, 'close'): final_video_clip_obj.close()