File size: 18,458 Bytes
287c9ca 9d84ba9 8583908 9840152 9d84ba9 990e23e 287c9ca 8583908 9840152 5e4272a f13d4b2 287c9ca 9d84ba9 f13d4b2 9840152 f13d4b2 09d5c67 5e4272a f13d4b2 29c2122 f13d4b2 50c620f f13d4b2 5e4272a f13d4b2 29c2122 f13d4b2 9840152 f13d4b2 9840152 29c2122 f13d4b2 5e4272a f13d4b2 29c2122 f13d4b2 9840152 29c2122 f13d4b2 9840152 b97795f 29c2122 41b47a8 09d5c67 9d84ba9 29c2122 5e4272a f13d4b2 5e4272a f13d4b2 5e4272a 9d84ba9 f13d4b2 5e4272a f13d4b2 5e4272a f13d4b2 990e23e f13d4b2 29c2122 f13d4b2 9840152 5e4272a f13d4b2 5e4272a 29c2122 5e4272a f13d4b2 9840152 f13d4b2 9840152 5e4272a f13d4b2 8583908 9d84ba9 29c2122 8583908 29c2122 f13d4b2 29c2122 9d84ba9 8583908 f13d4b2 29c2122 9d84ba9 29c2122 9d84ba9 29c2122 5e4272a 9d84ba9 9840152 9d84ba9 f13d4b2 9d84ba9 f13d4b2 5e4272a 29c2122 9840152 f13d4b2 9840152 f13d4b2 8583908 b97795f f13d4b2 5e4272a 9d84ba9 f13d4b2 29c2122 f13d4b2 5e4272a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import subprocess # For the dummy video fallback
# --- ElevenLabs Import ---
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None # Placeholder for the class
Voice = None # Placeholder for the class
VoiceSettings = None # Placeholder for the class
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient
Voice = ImportedVoice
VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True
print("Successfully imported ElevenLabs client components (SDK v1.x.x pattern).")
except ImportError as e_eleven:
print(f"WARNING: Could not import ElevenLabs client components: {e_eleven}. ElevenLabs audio generation will be disabled.")
except Exception as e_gen_eleven: # Catch any other general import error for elevenlabs
print(f"WARNING: General error importing ElevenLabs: {e_gen_eleven}. ElevenLabs audio generation will be disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "arial.ttf"
self.font_path_in_container = f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
self.font_size_pil = 20
self.video_overlay_font_size = 30
self.video_overlay_font_color = 'white'
self.video_overlay_font = 'Arial-Bold'
try:
self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil)
# print(f"Placeholder font loaded: {self.font_path_in_container}.") # Less verbose
except IOError:
print(f"Warning: Placeholder font '{self.font_path_in_container}' not loaded. Using default.")
self.font = ImageFont.load_default()
self.font_size_pil = 10
self.openai_api_key = None
self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"
self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
# ElevenLabs Client
self.elevenlabs_api_key = None
self.USE_ELEVENLABS = False
self.elevenlabs_client = None
self.elevenlabs_voice_id = "Rachel" # Default, can be name or ID
if VoiceSettings: # Check if VoiceSettings was successfully imported
self.elevenlabs_voice_settings = VoiceSettings(
stability=0.65, similarity_boost=0.75,
style=0.1, use_speaker_boost=True
)
else:
self.elevenlabs_voice_settings = None
self.pexels_api_key = None
self.USE_PEXELS = False
def set_openai_api_key(self,k):
self.openai_api_key=k
self.USE_AI_IMAGE_GENERATION=bool(k)
# print(f"DALL-E ({self.dalle_model}) {'Ready' if k else 'Disabled'}.")
def set_elevenlabs_api_key(self,api_key):
self.elevenlabs_api_key=api_key
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
# Optional: Test client (e.g., fetch voices) can be added here for robust init
# voices_test = self.elevenlabs_client.voices.get_all() # This makes an API call
# if voices_test and voices_test.voices: print("ElevenLabs client connected.")
self.USE_ELEVENLABS=True
# print("ElevenLabs Client Ready.")
except Exception as e:
print(f"Error initializing ElevenLabs client with API key: {e}. ElevenLabs Disabled.");
self.USE_ELEVENLABS=False; self.elevenlabs_client = None
else:
self.USE_ELEVENLABS=False; self.elevenlabs_client = None
# if not ELEVENLABS_CLIENT_IMPORTED or not ElevenLabsAPIClient:
# print("ElevenLabs Client class was not imported. ElevenLabs Disabled.") # Already printed at import
# else:
# print("ElevenLabs API Key not provided. ElevenLabs Disabled.") # Less verbose
def set_pexels_api_key(self,k):
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
# print(f"Pexels {'Ready' if k else 'Disabled'}.")
def _get_text_dimensions(self,text_content,font_obj):
if not text_content: return 0,self.font_size_pil
try:
if hasattr(font_obj,'getbbox'):
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
return w, h if h > 0 else self.font_size_pil
elif hasattr(font_obj,'getsize'):
w,h=font_obj.getsize(text_content)
return w, h if h > 0 else self.font_size_pil
else: # Fallback
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
except Exception: # Generic fallback on error
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
def _create_placeholder_image_content(self,text_description,filename,size=(1280,720)):
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
if not text_description: text_description="(Placeholder: No prompt text)"
words=text_description.split();current_line=""
for word in words:
test_line=current_line+word+" "
if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
else:
if current_line: lines.append(current_line.strip())
current_line=word+" "
if current_line: lines.append(current_line.strip())
if not lines: lines.append("(Text error or too long for placeholder)")
_,single_line_h=self._get_text_dimensions("Ay",self.font)
single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) # Max lines based on height
y_text=padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
for i in range(max_lines_to_display):
line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
if i==6 and max_lines_to_display > 7: # Show ellipsis if more text
d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
filepath=os.path.join(self.output_dir,filename)
try:img.save(filepath);return filepath
except Exception as e:print(f"Error saving placeholder image {filepath}: {e}");return None
def _search_pexels_image(self, query, output_filename_base):
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"} # Get only 1 relevant image
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(100,999)}.jpg")
filepath = os.path.join(self.output_dir, pexels_filename)
try:
print(f"Searching Pexels for: '{query}'")
effective_query = " ".join(query.split()[:5]) # Use first 5 words for Pexels query
params["query"] = effective_query
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
response.raise_for_status(); data = response.json()
if data.get("photos") and len(data["photos"]) > 0:
photo_url = data["photos"][0]["src"]["large2x"] # High quality
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); print(f"Pexels image saved: {filepath}"); return filepath
else: print(f"No photos found on Pexels for query: '{effective_query}'")
except Exception as e: print(f"Pexels search/download error for query '{query}': {e}")
return None
def generate_image_visual(self, image_prompt_text, scene_data, scene_identifier_filename):
filepath = os.path.join(self.output_dir, scene_identifier_filename)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
max_retries = 2
for attempt in range(max_retries):
try:
print(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:120]}...")
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
response = client.images.generate(
model=self.dalle_model, prompt=image_prompt_text, n=1,
size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid"
)
image_url = response.data[0].url
revised_prompt = getattr(response.data[0], 'revised_prompt', None)
if revised_prompt: print(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
image_response = requests.get(image_url, timeout=120)
image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
img_data.save(filepath); print(f"AI Image (DALL-E) saved: {filepath}"); return filepath
except openai.RateLimitError as e:
print(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s...")
time.sleep(5 * (attempt + 1))
if attempt == max_retries - 1: print("Max retries for RateLimitError."); break
else: continue
except openai.APIError as e: print(f"OpenAI API Error: {e}"); break
except requests.exceptions.RequestException as e: print(f"Requests Error (DALL-E download): {e}"); break
except Exception as e: print(f"Generic error (DALL-E gen): {e}"); break
print("DALL-E generation failed. Trying Pexels fallback...")
pexels_query_text = scene_data.get('pexels_search_query_๊ฐ๋
',
f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pexels_path = self._search_pexels_image(pexels_query_text, scene_identifier_filename)
if pexels_path: return pexels_path
print("Pexels also failed/disabled. Using placeholder.")
return self._create_placeholder_image_content(
f"[AI/Pexels Failed] Original Prompt: {image_prompt_text[:100]}...",
scene_identifier_filename, size=self.video_frame_size
)
else:
return self._create_placeholder_image_content(
image_prompt_text, scene_identifier_filename, size=self.video_frame_size
)
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
# print("ElevenLabs not enabled, client not initialized, or no text. Skipping audio.") # Less verbose
return None
audio_filepath = os.path.join(self.output_dir, output_filename)
try:
print(f"Generating ElevenLabs audio (Voice: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
voice_param = self.elevenlabs_voice_id # Default to string ID
if Voice and self.elevenlabs_voice_settings: # Check if Voice & VoiceSettings were imported
voice_param = Voice(
voice_id=self.elevenlabs_voice_id,
settings=self.elevenlabs_voice_settings
)
audio_data_iterator = self.elevenlabs_client.generate(
text=text_to_narrate,
voice=voice_param,
model="eleven_multilingual_v2" # Or other models e.g. "eleven_turbo_v2"
)
with open(audio_filepath, "wb") as f:
for chunk in audio_data_iterator:
if chunk: f.write(chunk)
print(f"ElevenLabs audio saved: {audio_filepath}")
return audio_filepath
except AttributeError as ae:
print(f"AttributeError with ElevenLabs client (method name like 'generate' might differ): {ae}")
except Exception as e:
print(f"Error generating ElevenLabs audio: {e}")
return None
def create_video_from_images(self, image_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24, duration_per_image=4.5):
if not image_data_list: print("No image data for video."); return None
# print(f"Creating video from {len(image_data_list)} image sets.") # Less verbose
processed_clips = []; narration_audio_clip = None; final_video_clip_obj = None
for i, data in enumerate(image_data_list):
img_path, scene_num, key_action = data.get('path'), data.get('scene_num', i+1), data.get('key_action', '')
if not (img_path and os.path.exists(img_path)): print(f"Img not found: {img_path}"); continue
try:
pil_img = Image.open(img_path);
if pil_img.mode != 'RGB': pil_img = pil_img.convert('RGB')
img_copy = pil_img.copy()
img_copy.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS)
canvas = Image.new('RGB', self.video_frame_size, (random.randint(0,10), random.randint(0,10), random.randint(0,10)))
xo, yo = (self.video_frame_size[0]-img_copy.width)//2, (self.video_frame_size[1]-img_copy.height)//2
canvas.paste(img_copy, (xo,yo))
frame_np = np.array(canvas)
img_clip = ImageClip(frame_np).set_duration(duration_per_image)
end_scale = random.uniform(1.05, 1.12)
img_clip = img_clip.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / duration_per_image))
img_clip = img_clip.set_position('center')
if key_action:
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}", fontsize=self.video_overlay_font_size,
color=self.video_overlay_font_color, font=self.video_overlay_font,
bg_color='rgba(10,10,20,0.75)', method='caption', align='West',
size=(self.video_frame_size[0]*0.9, None), kerning=-1, stroke_color='black', stroke_width=1
).set_duration(duration_per_image - 1.0).set_start(0.5).set_position(('center', 0.9), relative=True)
final_scene_clip = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size)
else: final_scene_clip = img_clip
processed_clips.append(final_scene_clip)
except Exception as e: print(f"Error creating video clip for {img_path}: {e}.")
if not processed_clips: print("No clips processed for video."); return None
transition = 0.8
final_video_clip_obj = concatenate_videoclips(processed_clips, padding=-transition, method="compose")
if final_video_clip_obj.duration > transition*2:
final_video_clip_obj = final_video_clip_obj.fx(vfx.fadein, transition).fx(vfx.fadeout, transition)
if overall_narration_path and os.path.exists(overall_narration_path):
try:
narration_audio_clip = AudioFileClip(overall_narration_path)
current_video_duration = final_video_clip_obj.duration
# If narration is shorter, trim video. If narration is longer, audio will be cut by video duration.
if narration_audio_clip.duration < current_video_duration:
final_video_clip_obj = final_video_clip_obj.subclip(0, narration_audio_clip.duration)
final_video_clip_obj = final_video_clip_obj.set_audio(narration_audio_clip)
print("Overall narration added to video.")
except Exception as e: print(f"Error adding overall narration: {e}.")
output_path = os.path.join(self.output_dir, output_filename)
try:
print(f"Writing final video to: {output_path}")
final_video_clip_obj.write_videofile(output_path, fps=fps, codec='libx264', preset='medium',
audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k") # Consider 'medium' preset
print(f"Video successfully created: {output_path}"); return output_path
except Exception as e: print(f"Error writing video file: {e}"); return None
finally:
for c_item in processed_clips:
if hasattr(c_item, 'close'): c_item.close()
if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
if final_video_clip_obj and hasattr(final_video_clip_obj, 'close'): final_video_clip_obj.close() |