|
|
|
from PIL import Image, ImageDraw, ImageFont |
|
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip, |
|
CompositeVideoClip) |
|
import moviepy.video.fx.all as vfx |
|
import numpy as np |
|
import os |
|
import openai |
|
import requests |
|
import io |
|
|
|
class VisualEngine: |
|
def __init__(self, output_dir="temp_generated_media"): |
|
self.output_dir = output_dir |
|
os.makedirs(self.output_dir, exist_ok=True) |
|
|
|
self.font_filename = "arial.ttf" |
|
self.font_path_in_container = f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}" |
|
self.font_size_pil = 24 |
|
self.video_overlay_font_size = 36 |
|
self.video_overlay_font_color = 'white' |
|
|
|
|
|
self.video_overlay_font = 'Arial' |
|
|
|
try: |
|
self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil) |
|
print(f"Successfully loaded font: {self.font_path_in_container} for placeholders.") |
|
except IOError: |
|
print(f"Warning: Could not load font from '{self.font_path_in_container}'. Placeholders will use default font.") |
|
self.font = ImageFont.load_default() |
|
self.font_size_pil = 11 |
|
|
|
self.openai_api_key = None |
|
self.USE_AI_IMAGE_GENERATION = False |
|
self.dalle_model = "dall-e-3" |
|
self.image_size = "1024x1024" |
|
|
|
|
|
self.video_frame_size = (1280, 720) |
|
|
|
def set_openai_api_key(self, api_key): |
|
if api_key: |
|
self.openai_api_key = api_key |
|
self.USE_AI_IMAGE_GENERATION = True |
|
print("OpenAI API key set. AI Image Generation Enabled with DALL-E.") |
|
else: |
|
self.USE_AI_IMAGE_GENERATION = False |
|
print("OpenAI API key not provided. AI Image Generation Disabled. Using placeholders.") |
|
|
|
def _get_text_dimensions(self, text_content, font_obj): |
|
if text_content == "" or text_content is None: |
|
return 0, self.font_size_pil |
|
try: |
|
if hasattr(font_obj, 'getbbox'): |
|
bbox = font_obj.getbbox(text_content) |
|
width = bbox[2] - bbox[0] |
|
height = bbox[3] - bbox[1] |
|
return width, height if height > 0 else self.font_size_pil |
|
elif hasattr(font_obj, 'getsize'): |
|
width, height = font_obj.getsize(text_content) |
|
return width, height if height > 0 else self.font_size_pil |
|
else: |
|
avg_char_width = self.font_size_pil * 0.6 |
|
height_estimate = self.font_size_pil * 1.2 |
|
return int(len(text_content) * avg_char_width), int(height_estimate if height_estimate > 0 else self.font_size_pil) |
|
except Exception as e: |
|
print(f"Warning: Error getting text dimensions for '{text_content}': {e}. Using estimates.") |
|
avg_char_width = self.font_size_pil * 0.6 |
|
height_estimate = self.font_size_pil * 1.2 |
|
return int(len(text_content) * avg_char_width), int(height_estimate if height_estimate > 0 else self.font_size_pil) |
|
|
|
def _create_placeholder_image_content(self, text_description, filename, size=(1024, 576)): |
|
img = Image.new('RGB', size, color=(30, 30, 60)) |
|
draw = ImageDraw.Draw(img) |
|
padding = 30 |
|
max_text_width = size[0] - (2 * padding) |
|
lines = [] |
|
if not text_description: text_description = "(No description provided for placeholder)" |
|
words = text_description.split() |
|
current_line = "" |
|
for word in words: |
|
test_line_candidate = current_line + word + " " |
|
line_width, _ = self._get_text_dimensions(test_line_candidate.strip(), self.font) |
|
if line_width <= max_text_width and current_line != "": current_line = test_line_candidate |
|
elif line_width <= max_text_width and current_line == "": current_line = test_line_candidate |
|
elif current_line != "": |
|
lines.append(current_line.strip()) |
|
current_line = word + " " |
|
else: |
|
temp_word = word |
|
while self._get_text_dimensions(temp_word, self.font)[0] > max_text_width and len(temp_word) > 0: temp_word = temp_word[:-1] |
|
lines.append(temp_word) |
|
current_line = "" |
|
if current_line.strip(): lines.append(current_line.strip()) |
|
if not lines: lines.append("(Text error in placeholder)") |
|
_, single_line_height = self._get_text_dimensions("Tg", self.font) |
|
if single_line_height == 0: single_line_height = self.font_size_pil |
|
line_spacing_factor = 1.3 |
|
estimated_line_block_height = len(lines) * single_line_height * line_spacing_factor |
|
y_text = (size[1] - estimated_line_block_height) / 2.0 |
|
if y_text < padding: y_text = float(padding) |
|
for line_idx, line in enumerate(lines): |
|
if line_idx >= 7 and len(lines) > 8: |
|
draw.text(xy=(float(padding), y_text), text="...", fill=(200, 200, 130), font=self.font) |
|
break |
|
line_width, _ = self._get_text_dimensions(line, self.font) |
|
x_text = (size[0] - line_width) / 2.0 |
|
if x_text < padding: x_text = float(padding) |
|
draw.text(xy=(x_text, y_text), text=line, fill=(220, 220, 150), font=self.font) |
|
y_text += single_line_height * line_spacing_factor |
|
filepath = os.path.join(self.output_dir, filename) |
|
try: |
|
img.save(filepath) |
|
except Exception as e: |
|
print(f"Error saving placeholder image {filepath}: {e}") |
|
return None |
|
return filepath |
|
|
|
def generate_image_visual(self, image_prompt_text, scene_identifier_filename): |
|
filepath = os.path.join(self.output_dir, scene_identifier_filename) |
|
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: |
|
try: |
|
print(f"Generating DALL-E ({self.dalle_model}) image for: {image_prompt_text[:100]}...") |
|
client = openai.OpenAI(api_key=self.openai_api_key) |
|
response = client.images.generate( |
|
model=self.dalle_model, prompt=image_prompt_text, n=1, |
|
size=self.image_size, quality="standard", response_format="url" |
|
|
|
) |
|
image_url = response.data[0].url |
|
revised_prompt_dalle3 = getattr(response.data[0], 'revised_prompt', None) |
|
if revised_prompt_dalle3: print(f"DALL-E 3 revised prompt: {revised_prompt_dalle3[:150]}...") |
|
|
|
image_response = requests.get(image_url, timeout=60) |
|
image_response.raise_for_status() |
|
|
|
img_data = Image.open(io.BytesIO(image_response.content)) |
|
if img_data.mode == 'RGBA': |
|
img_data = img_data.convert('RGB') |
|
|
|
|
|
img_data.save(filepath) |
|
print(f"AI Image (DALL-E) saved: {filepath}") |
|
return filepath |
|
except openai.APIError as e: |
|
print(f"OpenAI API Error: {e}") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Requests Error downloading DALL-E image: {e}") |
|
except Exception as e: |
|
print(f"Generic error during DALL-E image generation: {e}") |
|
|
|
print("Falling back to placeholder image due to DALL-E error.") |
|
|
|
return self._create_placeholder_image_content( |
|
f"[DALL-E Failed] Prompt: {image_prompt_text[:150]}...", |
|
scene_identifier_filename, size=self.video_frame_size |
|
) |
|
else: |
|
|
|
|
|
return self._create_placeholder_image_content( |
|
image_prompt_text, scene_identifier_filename, size=self.video_frame_size |
|
) |
|
|
|
def create_video_from_images(self, image_data_list, output_filename="final_video.mp4", fps=24, duration_per_image=3): |
|
if not image_data_list: |
|
print("No image data provided to create video.") |
|
return None |
|
|
|
print(f"Attempting to create video from {len(image_data_list)} images.") |
|
processed_clips = [] |
|
|
|
for i, data in enumerate(image_data_list): |
|
img_path = data.get('path') |
|
scene_num = data.get('scene_num', i + 1) |
|
key_action = data.get('key_action', '') |
|
|
|
if not (img_path and os.path.exists(img_path)): |
|
print(f"Image path invalid or not found: {img_path}. Skipping for video.") |
|
continue |
|
try: |
|
pil_image_original = Image.open(img_path) |
|
|
|
if pil_image_original.mode != 'RGB': |
|
pil_image_original = pil_image_original.convert('RGB') |
|
|
|
|
|
pil_image_for_frame = pil_image_original.copy() |
|
|
|
pil_image_for_frame.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS) |
|
|
|
|
|
|
|
background_canvas = Image.new('RGB', self.video_frame_size, (0,0,0)) |
|
paste_x = (self.video_frame_size[0] - pil_image_for_frame.width) // 2 |
|
paste_y = (self.video_frame_size[1] - pil_image_for_frame.height) // 2 |
|
background_canvas.paste(pil_image_for_frame, (paste_x, paste_y)) |
|
|
|
frame_np = np.array(background_canvas) |
|
|
|
|
|
img_clip = ImageClip(frame_np).set_duration(duration_per_image) |
|
|
|
|
|
end_scale = 1.08 |
|
img_clip = img_clip.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / duration_per_image)) |
|
img_clip = img_clip.set_position('center') |
|
|
|
|
|
overlay_text = f"Scene {scene_num}: {key_action}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
txt_clip = TextClip( |
|
overlay_text, |
|
fontsize=self.video_overlay_font_size, |
|
color=self.video_overlay_font_color, |
|
font=self.video_overlay_font, |
|
bg_color='rgba(0,0,0,0.6)', |
|
size=(self.video_frame_size[0] * 0.9, None), |
|
method='caption', |
|
align='West', |
|
kerning=-1 |
|
).set_duration(duration_per_image - 0.5).set_start(0.25) |
|
|
|
txt_clip = txt_clip.set_position(('center', 0.88), relative=True) |
|
|
|
video_with_text_overlay = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size) |
|
processed_clips.append(video_with_text_overlay) |
|
|
|
except Exception as e_clip: |
|
print(f"Error processing image/creating clip for {img_path}: {e_clip}. Skipping.") |
|
|
|
if not processed_clips: |
|
print("No clips could be processed for the video.") |
|
return None |
|
|
|
|
|
final_video_clip = concatenate_videoclips(processed_clips, padding=-0.5, method="compose") |
|
|
|
if final_video_clip.duration > 1: |
|
final_video_clip = final_video_clip.fx(vfx.fadein, 0.5).fx(vfx.fadeout, 0.5) |
|
|
|
output_path = os.path.join(self.output_dir, output_filename) |
|
print(f"Writing final video to: {output_path}") |
|
try: |
|
final_video_clip.write_videofile( |
|
output_path, fps=fps, codec='libx264', audio_codec='aac', |
|
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'), |
|
remove_temp=True, threads=os.cpu_count() or 2, logger='bar' |
|
) |
|
print(f"Video successfully created: {output_path}") |
|
return output_path |
|
except Exception as e: |
|
print(f"Error writing final video file: {e}") |
|
return None |
|
finally: |
|
for clip_item in processed_clips: |
|
if hasattr(clip_item, 'close'): clip_item.close() |
|
if hasattr(final_video_clip, 'close'): final_video_clip.close() |