CingenAI / core /visual_engine.py
mgbam's picture
Update core/visual_engine.py
990e23e verified
raw
history blame
14.4 kB
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont # Pillow should be >= 10.0.0
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip,
CompositeVideoClip)
import moviepy.video.fx.all as vfx # For effects like resize, fadein, fadeout
import numpy as np
import os
import openai
import requests
import io
class VisualEngine:
def __init__(self, output_dir="temp_generated_media"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "arial.ttf"
self.font_path_in_container = f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
self.font_size_pil = 24
self.video_overlay_font_size = 36
self.video_overlay_font_color = 'white'
# For video overlays, TextClip will use ImageMagick. 'Arial' is a common system font name.
# If issues, use self.font_path_in_container (if ImageMagick can access it via moviepy)
self.video_overlay_font = 'Arial'
try:
self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil)
print(f"Successfully loaded font: {self.font_path_in_container} for placeholders.")
except IOError:
print(f"Warning: Could not load font from '{self.font_path_in_container}'. Placeholders will use default font.")
self.font = ImageFont.load_default()
self.font_size_pil = 11
self.openai_api_key = None
self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"
self.image_size = "1024x1024" # DALL-E 3 output size
# Target video frame size (e.g., 16:9 aspect ratio)
# DALL-E 3 images (1024x1024) will be letter/pillar-boxed to fit this.
self.video_frame_size = (1280, 720)
def set_openai_api_key(self, api_key):
if api_key:
self.openai_api_key = api_key
self.USE_AI_IMAGE_GENERATION = True
print("OpenAI API key set. AI Image Generation Enabled with DALL-E.")
else:
self.USE_AI_IMAGE_GENERATION = False
print("OpenAI API key not provided. AI Image Generation Disabled. Using placeholders.")
def _get_text_dimensions(self, text_content, font_obj):
if text_content == "" or text_content is None:
return 0, self.font_size_pil
try:
if hasattr(font_obj, 'getbbox'): # Pillow >= 8.0.0
bbox = font_obj.getbbox(text_content)
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
return width, height if height > 0 else self.font_size_pil
elif hasattr(font_obj, 'getsize'): # Older Pillow
width, height = font_obj.getsize(text_content)
return width, height if height > 0 else self.font_size_pil
else:
avg_char_width = self.font_size_pil * 0.6
height_estimate = self.font_size_pil * 1.2
return int(len(text_content) * avg_char_width), int(height_estimate if height_estimate > 0 else self.font_size_pil)
except Exception as e:
print(f"Warning: Error getting text dimensions for '{text_content}': {e}. Using estimates.")
avg_char_width = self.font_size_pil * 0.6
height_estimate = self.font_size_pil * 1.2
return int(len(text_content) * avg_char_width), int(height_estimate if height_estimate > 0 else self.font_size_pil)
def _create_placeholder_image_content(self, text_description, filename, size=(1024, 576)): # Default placeholder size
img = Image.new('RGB', size, color=(30, 30, 60))
draw = ImageDraw.Draw(img)
padding = 30
max_text_width = size[0] - (2 * padding)
lines = []
if not text_description: text_description = "(No description provided for placeholder)"
words = text_description.split()
current_line = ""
for word in words:
test_line_candidate = current_line + word + " "
line_width, _ = self._get_text_dimensions(test_line_candidate.strip(), self.font)
if line_width <= max_text_width and current_line != "": current_line = test_line_candidate
elif line_width <= max_text_width and current_line == "": current_line = test_line_candidate
elif current_line != "":
lines.append(current_line.strip())
current_line = word + " "
else:
temp_word = word
while self._get_text_dimensions(temp_word, self.font)[0] > max_text_width and len(temp_word) > 0: temp_word = temp_word[:-1]
lines.append(temp_word)
current_line = ""
if current_line.strip(): lines.append(current_line.strip())
if not lines: lines.append("(Text error in placeholder)")
_, single_line_height = self._get_text_dimensions("Tg", self.font)
if single_line_height == 0: single_line_height = self.font_size_pil
line_spacing_factor = 1.3
estimated_line_block_height = len(lines) * single_line_height * line_spacing_factor
y_text = (size[1] - estimated_line_block_height) / 2.0
if y_text < padding: y_text = float(padding)
for line_idx, line in enumerate(lines):
if line_idx >= 7 and len(lines) > 8:
draw.text(xy=(float(padding), y_text), text="...", fill=(200, 200, 130), font=self.font)
break
line_width, _ = self._get_text_dimensions(line, self.font)
x_text = (size[0] - line_width) / 2.0
if x_text < padding: x_text = float(padding)
draw.text(xy=(x_text, y_text), text=line, fill=(220, 220, 150), font=self.font)
y_text += single_line_height * line_spacing_factor
filepath = os.path.join(self.output_dir, filename)
try:
img.save(filepath)
except Exception as e:
print(f"Error saving placeholder image {filepath}: {e}")
return None
return filepath
def generate_image_visual(self, image_prompt_text, scene_identifier_filename):
filepath = os.path.join(self.output_dir, scene_identifier_filename)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
try:
print(f"Generating DALL-E ({self.dalle_model}) image for: {image_prompt_text[:100]}...")
client = openai.OpenAI(api_key=self.openai_api_key)
response = client.images.generate(
model=self.dalle_model, prompt=image_prompt_text, n=1,
size=self.image_size, quality="standard", response_format="url"
# style="vivid" # or "natural" for DALL-E 3, optional
)
image_url = response.data[0].url
revised_prompt_dalle3 = getattr(response.data[0], 'revised_prompt', None) # Safely access
if revised_prompt_dalle3: print(f"DALL-E 3 revised prompt: {revised_prompt_dalle3[:150]}...")
image_response = requests.get(image_url, timeout=60)
image_response.raise_for_status()
img_data = Image.open(io.BytesIO(image_response.content))
if img_data.mode == 'RGBA': # Ensure RGB for consistency, PNG can be RGBA
img_data = img_data.convert('RGB')
# Save the AI generated image (typically 1024x1024 from DALL-E)
img_data.save(filepath)
print(f"AI Image (DALL-E) saved: {filepath}")
return filepath
except openai.APIError as e:
print(f"OpenAI API Error: {e}")
except requests.exceptions.RequestException as e:
print(f"Requests Error downloading DALL-E image: {e}")
except Exception as e:
print(f"Generic error during DALL-E image generation: {e}")
print("Falling back to placeholder image due to DALL-E error.")
# Fallback uses video_frame_size to match what video expects if AI fails
return self._create_placeholder_image_content(
f"[DALL-E Failed] Prompt: {image_prompt_text[:150]}...",
scene_identifier_filename, size=self.video_frame_size
)
else: # AI not enabled or key missing
# print(f"AI image generation not enabled/ready. Creating placeholder.")
# Placeholder also uses video_frame_size for consistency in video pipeline
return self._create_placeholder_image_content(
image_prompt_text, scene_identifier_filename, size=self.video_frame_size
)
def create_video_from_images(self, image_data_list, output_filename="final_video.mp4", fps=24, duration_per_image=3):
if not image_data_list:
print("No image data provided to create video.")
return None
print(f"Attempting to create video from {len(image_data_list)} images.")
processed_clips = []
for i, data in enumerate(image_data_list):
img_path = data.get('path')
scene_num = data.get('scene_num', i + 1)
key_action = data.get('key_action', '')
if not (img_path and os.path.exists(img_path)):
print(f"Image path invalid or not found: {img_path}. Skipping for video.")
continue
try:
pil_image_original = Image.open(img_path)
if pil_image_original.mode != 'RGB': # Ensure RGB for video
pil_image_original = pil_image_original.convert('RGB')
# Create a copy to resize (thumbnail modifies in-place)
pil_image_for_frame = pil_image_original.copy()
# Resize image to fit within self.video_frame_size, maintaining aspect ratio
pil_image_for_frame.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS)
# Create a background canvas of the exact video_frame_size (e.g., 1280x720)
# This will letterbox/pillarbox the image if its aspect ratio differs from video_frame_size
background_canvas = Image.new('RGB', self.video_frame_size, (0,0,0)) # Black background
paste_x = (self.video_frame_size[0] - pil_image_for_frame.width) // 2
paste_y = (self.video_frame_size[1] - pil_image_for_frame.height) // 2
background_canvas.paste(pil_image_for_frame, (paste_x, paste_y))
frame_np = np.array(background_canvas) # Convert final PIL image to numpy array
# Base image clip
img_clip = ImageClip(frame_np).set_duration(duration_per_image)
# Ken Burns Effect (Simple Zoom In)
end_scale = 1.08 # Zoom to 108% of original size by the end
img_clip = img_clip.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / duration_per_image))
img_clip = img_clip.set_position('center') # Keep centered during zoom
# Text Overlay
overlay_text = f"Scene {scene_num}: {key_action}"
# Ensure font path is used if 'Arial' isn't found by ImageMagick/MoviePy
# For TextClip, moviepy relies on ImageMagick which has its own font discovery.
# Using a common font name like 'Arial' is often okay if mscorefonts are installed.
# If not, you might need to point to self.font_path_in_container
# Check if ImageMagick is installed in Docker, moviepy might need it for TextClip.
# `apt-get install imagemagick` in Dockerfile if TextClip has issues.
txt_clip = TextClip(
overlay_text,
fontsize=self.video_overlay_font_size,
color=self.video_overlay_font_color,
font=self.video_overlay_font, # Or self.font_path_in_container
bg_color='rgba(0,0,0,0.6)',
size=(self.video_frame_size[0] * 0.9, None), # Width 90% of video, height auto
method='caption',
align='West',
kerning=-1
).set_duration(duration_per_image - 0.5).set_start(0.25) # Start after 0.25s, end 0.25s before clip end
txt_clip = txt_clip.set_position(('center', 0.88), relative=True) # Position near bottom
video_with_text_overlay = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size)
processed_clips.append(video_with_text_overlay)
except Exception as e_clip:
print(f"Error processing image/creating clip for {img_path}: {e_clip}. Skipping.")
if not processed_clips:
print("No clips could be processed for the video.")
return None
# Concatenate with crossfade (0.5s)
final_video_clip = concatenate_videoclips(processed_clips, padding=-0.5, method="compose")
# Add fade in/out for the whole video
if final_video_clip.duration > 1: # Ensure video is long enough for fades
final_video_clip = final_video_clip.fx(vfx.fadein, 0.5).fx(vfx.fadeout, 0.5)
output_path = os.path.join(self.output_dir, output_filename)
print(f"Writing final video to: {output_path}")
try:
final_video_clip.write_videofile(
output_path, fps=fps, codec='libx264', audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True, threads=os.cpu_count() or 2, logger='bar'
)
print(f"Video successfully created: {output_path}")
return output_path
except Exception as e:
print(f"Error writing final video file: {e}")
return None
finally:
for clip_item in processed_clips:
if hasattr(clip_item, 'close'): clip_item.close()
if hasattr(final_video_clip, 'close'): final_video_clip.close()