CingenAI / core /visual_engine.py
mgbam's picture
Update core/visual_engine.py
4c2220b verified
raw
history blame
17.4 kB
# core/visual_engine.py
# ... (imports remain the same as the last full version) ...
from PIL import Image, ImageDraw, ImageFont, ImageOps
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os, openai, requests, io, time, random, subprocess, logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
ELEVENLABS_CLIENT_IMPORTED = False
ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("Successfully imported ElevenLabs client components.")
except ImportError as e: logger.warning(f"ElevenLabs client import failed: {e}. Audio disabled.")
except Exception as e: logger.warning(f"General ElevenLabs import error: {e}. Audio disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"): # Added default
self.output_dir = output_dir; os.makedirs(self.output_dir, exist_ok=True)
# ... (font setup, OpenAI, Pexels init - same as previous) ...
self.font_filename="arial.ttf"; self.font_path_in_container=f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
self.font_size_pil=20; self.video_overlay_font_size=30; self.video_overlay_font_color='white'; self.video_overlay_font='Liberation-Sans-Bold'
try: self.font = ImageFont.truetype(self.font_path_in_container, self.font_size_pil); # logger.info(f"Placeholder font: {self.font_path_in_container}.")
except IOError: logger.warning(f"Placeholder font '{self.font_path_in_container}' fail. Default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"; self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
self.elevenlabs_client = None
self.elevenlabs_voice_id = default_elevenlabs_voice_id # Use passed default or "Rachel"
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
logger.info("VisualEngine initialized.")
def set_openai_api_key(self,k): # Same
self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None): # Modified to accept voice_id
self.elevenlabs_api_key=api_key
if voice_id_from_secret: # Prioritize voice ID from secret if provided
self.elevenlabs_voice_id = voice_id_from_secret
logger.info(f"ElevenLabs Voice ID set from secret/config: {self.elevenlabs_voice_id}")
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try:
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
if self.elevenlabs_client: self.USE_ELEVENLABS=True; logger.info(f"ElevenLabs Client Ready (Voice: {self.elevenlabs_voice_id}).")
else: self.USE_ELEVENLABS=False; logger.warning("ElevenLabs client is None post-init.")
except Exception as e:
logger.error(f"Error initializing ElevenLabs client: {e}. Disabled.", exc_info=True);
self.USE_ELEVENLABS=False; self.elevenlabs_client = None
else:
self.USE_ELEVENLABS=False; self.elevenlabs_client = None
if not (ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient):pass
else: logger.info("ElevenLabs API Key not provided. Disabled.")
def set_pexels_api_key(self,k): # Same
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
# _get_text_dimensions, _create_placeholder_image_content, _search_pexels_image, generate_image_visual
# remain the same as the last full version.
def _get_text_dimensions(self,t,f): # Same
if not t: return 0,self.font_size_pil
try:
if hasattr(f,'getbbox'): bb=f.getbbox(t);w=bb[2]-bb[0];h=bb[3]-bb[1];return w, h if h > 0 else self.font_size_pil
elif hasattr(f,'getsize'): w,h=f.getsize(t);return w, h if h > 0 else self.font_size_pil
else: return int(len(t)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
except: return int(len(t)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
def _create_placeholder_image_content(self,td,fn,s=None): # Same
if s is None: s = self.video_frame_size
img=Image.new('RGB',s,color=(20,20,40));d=ImageDraw.Draw(img);p=25;max_w=s[0]-(2*p);ls=[];
if not td: td="(Placeholder: No prompt text)"
ws=td.split();cl=""
for w in ws:
tl=cl+w+" ";
if self._get_text_dimensions(tl,self.font)[0] <= max_w: cl=tl
else:
if cl: ls.append(cl.strip()); cl=w+" "
if cl: ls.append(cl.strip())
if not ls: ls.append("(Text error or too long for placeholder)")
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
max_ls=min(len(ls),(s[1]-(2*p))//(single_line_h+2))
yt=p + (s[1]-(2*p) - max_ls*(single_line_h+2))/2.0
for i in range(max_ls):
line=ls[i];line_w,_=self._get_text_dimensions(line,self.font);xt=(s[0]-line_w)/2.0
d.text((xt,yt),line,font=self.font,fill=(200,200,180));yt+=single_line_h+2
if i==6 and max_ls > 7: d.text((xt,yt),"...",font=self.font,fill=(200,200,180));break
fp=os.path.join(self.output_dir,fn);
try:img.save(fp);return fp
except Exception as e:logger.error(f"Saving placeholder image {fp}: {e}", exc_info=True);return None
def _search_pexels_image(self, query, output_filename_base): # Same
if not self.USE_PEXELS or not self.pexels_api_key: return None
headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg")
fp = os.path.join(self.output_dir, pexels_filename)
try:
logger.info(f"Searching Pexels for: '{query}'"); eff_q = " ".join(query.split()[:5]); params["query"] = eff_q
r = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
r.raise_for_status(); data = r.json()
if data.get("photos") and len(data["photos"]) > 0:
url = data["photos"][0]["src"]["large2x"]
img_r = requests.get(url, timeout=60); img_r.raise_for_status()
img_d = Image.open(io.BytesIO(img_r.content))
if img_d.mode != 'RGB': img_d = img_d.convert('RGB')
img_d.save(fp); logger.info(f"Pexels image saved: {fp}"); return fp
else: logger.info(f"No photos on Pexels for: '{eff_q}'")
except Exception as e: logger.error(f"Pexels error for '{query}': {e}", exc_info=True)
return None
def generate_image_visual(self, image_prompt_text, scene_data, scene_identifier_filename): # Same
fp = os.path.join(self.output_dir, scene_identifier_filename)
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
retries = 2
for attempt in range(retries):
try:
logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
resp = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
img_url = resp.data[0].url; rev_prompt = getattr(resp.data[0], 'revised_prompt', None)
if rev_prompt: logger.info(f"DALL-E 3 revised_prompt: {rev_prompt[:100]}...")
img_resp = requests.get(img_url, timeout=120); img_resp.raise_for_status()
img_d = Image.open(io.BytesIO(img_resp.content));
if img_d.mode != 'RGB': img_d = img_d.convert('RGB')
img_d.save(fp); logger.info(f"AI Image (DALL-E) saved: {fp}"); return fp
except openai.RateLimitError as e:
logger.warning(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s..."); time.sleep(5 * (attempt + 1))
if attempt == retries - 1: logger.error("Max retries for RateLimitError."); break
else: continue
except openai.APIError as e: logger.error(f"OpenAI API Error: {e}"); break
except requests.exceptions.RequestException as e: logger.error(f"Requests Error (DALL-E download): {e}"); break
except Exception as e: logger.error(f"Generic error (DALL-E gen): {e}", exc_info=True); break
logger.warning("DALL-E failed. Trying Pexels fallback...")
pexels_q_text = scene_data.get('pexels_search_query_๊ฐ๋…', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
pexels_p = self._search_pexels_image(pexels_q_text, scene_identifier_filename)
if pexels_p: return pexels_p
logger.warning("Pexels also failed/disabled. Using placeholder.")
return self._create_placeholder_image_content(f"[AI/Pexels Failed] {image_prompt_text[:100]}...", scene_identifier_filename)
else:
return self._create_placeholder_image_content(image_prompt_text, scene_identifier_filename)
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"): # Uses self.elevenlabs_voice_id
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
logger.info("ElevenLabs conditions not met. Skipping audio generation.")
return None
audio_filepath = os.path.join(self.output_dir, output_filename)
try:
# self.elevenlabs_voice_id is now set during set_elevenlabs_api_key or by UI
logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
logger.info("Using elevenlabs_client.text_to_speech.stream()")
audio_data_iterator = self.elevenlabs_client.text_to_speech.stream(
text=text_to_narrate,
voice_id=str(self.elevenlabs_voice_id), # Ensure voice_id is a string
model_id="eleven_multilingual_v2",
)
elif hasattr(self.elevenlabs_client, 'generate') and Voice: # Fallback, ensure Voice is imported
logger.info("Using elevenlabs_client.generate() with Voice object.")
voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings if self.elevenlabs_voice_settings else None)
audio_data_iterator = self.elevenlabs_client.generate(
text=text_to_narrate, voice=voice_param, model="eleven_multilingual_v2")
else:
logger.error("No recognized audio generation method on ElevenLabs client."); return None
with open(audio_filepath, "wb") as f:
for chunk in audio_data_iterator:
if chunk: f.write(chunk)
logger.info(f"ElevenLabs audio saved: {audio_filepath}")
return audio_filepath
except AttributeError as ae: logger.error(f"AttributeError with ElevenLabs client: {ae}.", exc_info=True)
except Exception as e: logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
return None
def create_video_from_images(self, image_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24, duration_per_image=4.5): # Same as previous
if not image_data_list: logger.warning("No image data for video."); return None
processed_clips=[]; narration_audio_clip=None; final_video_clip_obj=None
logger.info(f"Preparing {len(image_data_list)} clips. Target frame: {self.video_frame_size}. Duration/img: {duration_per_image}s.")
for i, data in enumerate(image_data_list):
img_path, scene_num, key_action = data.get('path'), data.get('scene_num', i+1), data.get('key_action', '')
if not (img_path and os.path.exists(img_path)): logger.warning(f"Img not found: {img_path}"); continue
try:
pil_img = Image.open(img_path);
if pil_img.mode != 'RGB': pil_img = pil_img.convert('RGB')
img_copy = pil_img.copy(); img_copy.thumbnail(self.video_frame_size, Image.Resampling.LANCZOS)
canvas = Image.new('RGB', self.video_frame_size, (random.randint(0,5), random.randint(0,5), random.randint(0,5)))
xo,yo=(self.video_frame_size[0]-img_copy.width)//2, (self.video_frame_size[1]-img_copy.height)//2
canvas.paste(img_copy, (xo,yo)); frame_np = np.array(canvas)
img_clip_base = ImageClip(frame_np).set_duration(duration_per_image)
# img_clip = img_clip_base # Test: No Ken Burns if ANTIALIAS error persists
end_scale = random.uniform(1.03, 1.08); img_clip = img_clip_base.fx(vfx.resize, lambda t: 1+(end_scale-1)*(t/duration_per_image)); img_clip = img_clip.set_position('center')
if key_action:
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}", fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color, font=self.video_overlay_font,
bg_color='rgba(10,10,20,0.8)', method='caption', align='West', size=(self.video_frame_size[0]*0.9, None), kerning=-1, stroke_color='black', stroke_width=1.5
).set_duration(duration_per_image-1.0).set_start(0.5).set_position(('center',0.92),relative=True)
final_scene_clip = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size, use_bgclip=True, bg_color=(0,0,0))
else: final_scene_clip = img_clip
processed_clips.append(final_scene_clip)
except Exception as e: logger.error(f"Creating video clip for {img_path}: {e}", exc_info=True)
if not processed_clips: logger.warning("No clips processed for video."); return None
transition = 0.75
try:
final_video_clip_obj = concatenate_videoclips(processed_clips, padding=-transition, method="compose")
if final_video_clip_obj.duration > transition*2: final_video_clip_obj = final_video_clip_obj.fx(vfx.fadein, transition).fx(vfx.fadeout, transition)
if overall_narration_path and os.path.exists(overall_narration_path):
try:
narration_audio_clip = AudioFileClip(overall_narration_path)
if narration_audio_clip.duration < final_video_clip_obj.duration: final_video_clip_obj = final_video_clip_obj.subclip(0, narration_audio_clip.duration)
final_video_clip_obj = final_video_clip_obj.set_audio(narration_audio_clip); logger.info("Overall narration added.")
except Exception as e: logger.error(f"Adding overall narration: {e}", exc_info=True)
output_path = os.path.join(self.output_dir, output_filename); logger.info(f"Writing final video to: {output_path}")
final_video_clip_obj.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k")
logger.info(f"Video successfully created: {output_path}"); return output_path
except Exception as e: logger.error(f"Writing video file: {e}", exc_info=True); return None
finally:
for c_item in processed_clips:
if hasattr(c_item, 'close'): c_item.close()
if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
if final_video_clip_obj and hasattr(final_video_clip_obj, 'close'): final_video_clip_obj.close()