|
|
|
from PIL import Image, ImageDraw, ImageFont, ImageOps |
|
import base64 |
|
import mimetypes |
|
import numpy as np |
|
import os |
|
import openai |
|
import requests |
|
import io |
|
import time |
|
import random |
|
import logging |
|
|
|
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip, |
|
CompositeVideoClip, AudioFileClip) |
|
import moviepy.video.fx.all as vfx |
|
|
|
try: |
|
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS |
|
elif hasattr(Image, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS |
|
elif not hasattr(Image, 'ANTIALIAS'): print("WARNING: Pillow ANTIALIAS/Resampling issue.") |
|
except Exception as e_mp: print(f"WARNING: ANTIALIAS patch error: {e_mp}") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None |
|
try: |
|
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient |
|
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings |
|
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings |
|
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.") |
|
except Exception as e_11l_imp: logger.warning(f"ElevenLabs client import failed: {e_11l_imp}. Audio disabled.") |
|
|
|
RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClientClass = None |
|
try: |
|
from runwayml import RunwayML as ImportedRunwayMLAPIClientClass |
|
RunwayMLAPIClientClass = ImportedRunwayMLAPIClientClass; RUNWAYML_SDK_IMPORTED = True |
|
logger.info("RunwayML SDK imported.") |
|
except Exception as e_rwy_imp: logger.warning(f"RunwayML SDK import failed: {e_rwy_imp}. RunwayML disabled.") |
|
|
|
class VisualEngine: |
|
DEFAULT_FONT_SIZE_PIL = 10; PREFERRED_FONT_SIZE_PIL = 20 |
|
VIDEO_OVERLAY_FONT_SIZE = 30; VIDEO_OVERLAY_FONT_COLOR = 'white' |
|
DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'; PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold' |
|
|
|
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"): |
|
self.output_dir = output_dir; os.makedirs(self.output_dir, exist_ok=True) |
|
self.font_filename_pil_preference = "DejaVuSans-Bold.ttf" |
|
font_paths = [ self.font_filename_pil_preference, f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil_preference}", f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", f"/System/Library/Fonts/Supplemental/Arial.ttf", f"C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"] |
|
self.resolved_font_path_pil = next((p for p in font_paths if os.path.exists(p)), None) |
|
self.active_font_pil = ImageFont.load_default(); self.active_font_size_pil = self.DEFAULT_FONT_SIZE_PIL; self.active_moviepy_font_name = self.DEFAULT_MOVIEPY_FONT |
|
if self.resolved_font_path_pil: |
|
try: self.active_font_pil = ImageFont.truetype(self.resolved_font_path_pil, self.PREFERRED_FONT_SIZE_PIL); self.active_font_size_pil = self.PREFERRED_FONT_SIZE_PIL; logger.info(f"Pillow font: {self.resolved_font_path_pil} sz {self.active_font_size_pil}."); self.active_moviepy_font_name = 'DejaVu-Sans-Bold' if "dejavu" in self.resolved_font_path_pil.lower() else ('Liberation-Sans-Bold' if "liberation" in self.resolved_font_path_pil.lower() else self.DEFAULT_MOVIEPY_FONT) |
|
except IOError as e_font: logger.error(f"Pillow font IOError '{self.resolved_font_path_pil}': {e_font}. Default.") |
|
else: logger.warning("Preferred Pillow font not found. Default.") |
|
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024" |
|
self.video_frame_size = (1280, 720) |
|
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client_instance = None; self.elevenlabs_voice_id = default_elevenlabs_voice_id |
|
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings_obj = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True) |
|
else: self.elevenlabs_voice_settings_obj = None |
|
self.pexels_api_key = None; self.USE_PEXELS = False |
|
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_sdk_client_instance = None |
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass and os.getenv("RUNWAYML_API_SECRET"): |
|
try: self.runway_ml_sdk_client_instance = RunwayMLAPIClientClass(); self.USE_RUNWAYML = True; logger.info("RunwayML Client init from env var at startup.") |
|
except Exception as e_rwy_init: logger.error(f"Initial RunwayML client init failed: {e_rwy_init}"); self.USE_RUNWAYML = False |
|
logger.info("VisualEngine initialized.") |
|
|
|
def set_openai_api_key(self, k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}") |
|
def set_elevenlabs_api_key(self, k, vid=None): |
|
self.elevenlabs_api_key=k; |
|
if vid: self.elevenlabs_voice_id = vid; logger.info(f"11L Voice ID updated to: {vid}") |
|
if k and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: |
|
try: self.elevenlabs_client_instance = ElevenLabsAPIClient(api_key=k); self.USE_ELEVENLABS=True; logger.info(f"11L Client: Ready (Voice:{self.elevenlabs_voice_id})") |
|
except Exception as e: logger.error(f"11L client init err: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False; self.elevenlabs_client_instance=None |
|
else: self.USE_ELEVENLABS = False; logger.info(f"11L Disabled (key/SDK).") |
|
def set_pexels_api_key(self, k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels: {'Ready' if self.USE_PEXELS else 'Disabled'}") |
|
def set_runway_api_key(self, k): |
|
self.runway_api_key = k |
|
if k: |
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClientClass: |
|
if not self.runway_ml_sdk_client_instance: |
|
try: |
|
orig_secret = os.getenv("RUNWAYML_API_SECRET") |
|
if not orig_secret: os.environ["RUNWAYML_API_SECRET"]=k; logger.info("Temp set RUNWAYML_API_SECRET for SDK.") |
|
self.runway_ml_sdk_client_instance=RunwayMLAPIClientClass(); self.USE_RUNWAYML=True; logger.info("RunwayML Client init via set_key.") |
|
if not orig_secret: del os.environ["RUNWAYML_API_SECRET"]; logger.info("Cleared temp RUNWAYML_API_SECRET.") |
|
except Exception as e: logger.error(f"RunwayML Client init in set_key fail: {e}", exc_info=True); self.USE_RUNWAYML=False;self.runway_ml_sdk_client_instance=None |
|
else: self.USE_RUNWAYML=True; logger.info("RunwayML Client already init.") |
|
else: logger.warning("RunwayML SDK not imported. Disabled."); self.USE_RUNWAYML=False |
|
else: self.USE_RUNWAYML=False; self.runway_ml_sdk_client_instance=None; logger.info("RunwayML Disabled (no key).") |
|
|
|
def _image_to_data_uri(self, img_path): |
|
try: |
|
mime, _ = mimetypes.guess_type(img_path) |
|
if not mime: ext=os.path.splitext(img_path)[1].lower(); mime_map={".png":"image/png",".jpg":"image/jpeg",".jpeg":"image/jpeg",".webp":"image/webp"}; mime=mime_map.get(ext,"application/octet-stream"); |
|
if mime=="application/octet-stream": logger.warning(f"Unknown MIME for {img_path}, using {mime}.") |
|
with open(img_path,"rb") as f_img: enc_str=base64.b64encode(f_img.read()).decode('utf-8') |
|
uri=f"data:{mime};base64,{enc_str}"; logger.debug(f"Data URI for {os.path.basename(img_path)} (MIME:{mime}): {uri[:100]}..."); return uri |
|
except FileNotFoundError: logger.error(f"Img not found {img_path} for data URI."); return None |
|
except Exception as e: logger.error(f"Error converting {img_path} to data URI:{e}",exc_info=True); return None |
|
|
|
def _map_resolution_to_runway_ratio(self, w, h): |
|
r_str=f"{w}:{h}"; supp_r=["1280:720","720:1280","1104:832","832:1104","960:960","1584:672"]; |
|
if r_str in supp_r: return r_str |
|
logger.warning(f"Res {r_str} not in Gen-4 list. Default 1280:720."); return "1280:720" |
|
|
|
def _get_text_dimensions(self, txt, font): |
|
dh=getattr(font,'size',self.active_font_size_pil); |
|
if not txt: return 0,dh |
|
try: |
|
if hasattr(font,'getbbox'):b=font.getbbox(txt);w=b[2]-b[0];h=b[3]-b[1];return w,h if h>0 else dh |
|
elif hasattr(font,'getsize'):w,h=font.getsize(txt);return w,h if h>0 else dh |
|
else: return int(len(txt)*dh*0.6),int(dh*1.2) |
|
except Exception as e:logger.warning(f"Err _get_text_dimensions:{e}");return int(len(txt)*self.active_font_size_pil*0.6),int(self.active_font_size_pil*1.2) |
|
|
|
def _create_placeholder_image_content(self, desc, fname, sz=None): |
|
|
|
if sz is None: sz=self.video_frame_size; img=Image.new('RGB',sz,color=(20,20,40));drw=ImageDraw.Draw(img);pad=25;maxw=sz[0]-(2*pad);lns=[] |
|
if not desc: desc="(Placeholder)" |
|
wds=desc.split();curr_ln="" |
|
for idx,w in enumerate(wds): |
|
prosp_add=w+(" "if idx<len(wds)-1 else"");test_ln=curr_ln+prosp_add |
|
curr_w,_=self._get_text_dimensions(test_ln,self.active_font_pil) |
|
if curr_w==0 and test_ln.strip():curr_w=len(test_ln)*(self.active_font_size_pil*0.6) |
|
if curr_w<=maxw:curr_ln=test_ln |
|
else: |
|
if curr_ln.strip():lns.append(curr_ln.strip()) |
|
curr_ln=prosp_add |
|
if curr_ln.strip():lns.append(curr_ln.strip()) |
|
if not lns and desc: |
|
avg_cw,_=self._get_text_dimensions("W",self.active_font_pil);avg_cw=avg_cw or(self.active_font_size_pil*0.6) |
|
cpl=int(maxw/avg_cw)if avg_cw>0 else 20;lns.append(desc[:cpl]+("..."if len(desc)>cpl else"")) |
|
elif not lns:lns.append("(PH Error)") |
|
_,slh=self._get_text_dimensions("Ay",self.active_font_pil);slh=slh if slh>0 else self.active_font_size_pil+2 |
|
maxl=min(len(lns),(sz[1]-(2*pad))//(slh+2))if slh>0 else 1;maxl=max(1,maxl) |
|
yp=pad+(sz[1]-(2*pad)-maxl*(slh+2))/2.0 |
|
for i in range(maxl): |
|
lt=lns[i];lw,_=self._get_text_dimensions(lt,self.active_font_pil) |
|
if lw==0 and lt.strip():lw=len(lt)*(self.active_font_size_pil*0.6) |
|
xp=(sz[0]-lw)/2.0 |
|
try:drw.text((xp,yp),lt,font=self.active_font_pil,fill=(200,200,180)) |
|
except Exception as e:logger.error(f"Pillow d.text err:{e} for '{lt}'") |
|
yp+=slh+2 |
|
if i==6 and maxl>7: |
|
try:drw.text((xp,yp),"...",font=self.active_font_pil,fill=(200,200,180)) |
|
except Exception as e:logger.error(f"Pillow ellipsis err:{e}");break |
|
fpath=os.path.join(self.output_dir,fname) |
|
try:img.save(fpath);return fpath |
|
except Exception as e:logger.error(f"Save PH img '{fpath}' err:{e}",exc_info=True);return None |
|
|
|
def _search_pexels_image(self, q_str, out_fn_base): |
|
|
|
if not self.USE_PEXELS or not self.pexels_api_key: return None |
|
h={"Authorization":self.pexels_api_key};p={"query":q_str,"per_page":1,"orientation":"landscape","size":"large2x"} |
|
base_n_px,_=os.path.splitext(out_fn_base);px_fn=base_n_px+f"_pexels_{random.randint(1000,9999)}.jpg";fp_px=os.path.join(self.output_dir,px_fn) |
|
try: |
|
logger.info(f"Pexels: Search '{q_str}'");eff_q=" ".join(q_str.split()[:5]);p["query"]=eff_q |
|
resp_px=requests.get("https://api.pexels.com/v1/search",headers=h,params=p,timeout=20);resp_px.raise_for_status();data_px=resp_px.json() |
|
if data_px.get("photos") and len(data_px["photos"]) > 0: |
|
ph_det=data_px["photos"][0];ph_url=ph_det.get("src",{}).get("large2x") |
|
if not ph_url:logger.warning(f"Pexels: 'large2x' URL missing for '{eff_q}'.");return None |
|
img_resp=requests.get(ph_url,timeout=60);img_resp.raise_for_status();img_pil=Image.open(io.BytesIO(img_resp.content)) |
|
if img_pil.mode!='RGB':img_pil=img_pil.convert('RGB') |
|
img_pil.save(fp_px);logger.info(f"Pexels: Saved to {fp_px}");return fp_px |
|
else:logger.info(f"Pexels: No photos for '{eff_q}'.");return None |
|
except requests.exceptions.RequestException as e:logger.error(f"Pexels ReqExc '{q_str}':{e}",exc_info=False);return None |
|
except Exception as e:logger.error(f"Pexels GenErr '{q_str}':{e}",exc_info=True);return None |
|
|
|
def _generate_video_clip_with_runwayml(self, motion_prompt, input_img_path, scene_id_base_fn, duration_s=5): |
|
|
|
if not self.USE_RUNWAYML or not self.runway_ml_sdk_client_instance: logger.warning("RunwayML skip: Not enabled/client not init."); return None |
|
if not input_img_path or not os.path.exists(input_img_path): logger.error(f"Runway Gen-4 needs input img. Invalid: {input_img_path}"); return None |
|
img_data_uri = self._image_to_data_uri(input_img_path); |
|
if not img_data_uri: return None |
|
rwy_dur = 10 if duration_s >= 8 else 5; rwy_ratio = self._map_resolution_to_runway_ratio(self.video_frame_size[0],self.video_frame_size[1]) |
|
rwy_base_name,_=os.path.splitext(scene_id_base_fn);rwy_out_fn=rwy_base_name+f"_runway_gen4_d{rwy_dur}s.mp4";rwy_out_fp=os.path.join(self.output_dir,rwy_out_fn) |
|
logger.info(f"Runway Gen-4 task: motion='{motion_prompt[:70]}...', img='{os.path.basename(input_img_path)}', dur={rwy_dur}s, ratio='{rwy_ratio}'") |
|
try: |
|
rwy_task_sub = self.runway_ml_sdk_client_instance.image_to_video.create(model='gen4_turbo',prompt_image=img_data_uri,prompt_text=motion_prompt,duration=rwy_dur,ratio=rwy_ratio) |
|
rwy_task_id = rwy_task_sub.id; logger.info(f"Runway task ID: {rwy_task_id}. Polling...") |
|
poll_s=10;max_p_count=36;poll_t_start=time.time() |
|
while time.time()-poll_t_start < max_p_count*poll_s: |
|
time.sleep(poll_s);rwy_task_det=self.runway_ml_sdk_client_instance.tasks.retrieve(id=rwy_task_id) |
|
logger.info(f"Runway task {rwy_task_id} status: {rwy_task_det.status}") |
|
if rwy_task_det.status=='SUCCEEDED': |
|
rwy_out_url=getattr(getattr(rwy_task_det,'output',None),'url',None) or (getattr(rwy_task_det,'artifacts',None)and rwy_task_det.artifacts and hasattr(rwy_task_det.artifacts[0],'url')and rwy_task_det.artifacts[0].url) or (getattr(rwy_task_det,'artifacts',None)and rwy_task_det.artifacts and hasattr(rwy_task_det.artifacts[0],'download_url')and rwy_task_det.artifacts[0].download_url) |
|
if not rwy_out_url:logger.error(f"Runway task {rwy_task_id} SUCCEEDED, no output URL. Details:{vars(rwy_task_det)if hasattr(rwy_task_det,'__dict__')else rwy_task_det}");return None |
|
logger.info(f"Runway task {rwy_task_id} SUCCEEDED. Downloading: {rwy_out_url}") |
|
vid_resp=requests.get(rwy_out_url,stream=True,timeout=300);vid_resp.raise_for_status() |
|
with open(rwy_out_fp,'wb')as f: |
|
for chk in vid_resp.iter_content(chunk_size=8192):f.write(chk) |
|
logger.info(f"Runway Gen-4 video saved: {rwy_out_fp}");return rwy_out_fp |
|
elif rwy_task_det.status in['FAILED','ABORTED','ERROR']: |
|
rwy_err_msg=getattr(rwy_task_det,'error_message',None)or getattr(getattr(rwy_task_det,'output',None),'error',"Unknown Runway error.") |
|
logger.error(f"Runway task {rwy_task_id} status:{rwy_task_det.status}. Error:{rwy_err_msg}");return None |
|
logger.warning(f"Runway task {rwy_task_id} timed out.");return None |
|
except AttributeError as e:logger.error(f"RunwayML SDK AttrError:{e}. SDK methods changed?",exc_info=True);return None |
|
except Exception as e:logger.error(f"Runway Gen-4 API error:{e}",exc_info=True);return None |
|
|
|
def _create_placeholder_video_content(self, text_desc, fname, duration=4, size=None): |
|
|
|
if size is None: size = self.video_frame_size; fp = os.path.join(self.output_dir, fname); tc = None |
|
try: tc = TextClip(text_desc, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=size, method='caption').set_duration(duration); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp |
|
except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None |
|
finally: |
|
if tc and hasattr(tc, 'close'): |
|
try: tc.close() |
|
except Exception as e_cl_phv: logger.warning(f"Ignoring error closing placeholder TextClip: {e_cl_phv}") |
|
|
|
def generate_scene_asset(self, img_prompt, motion_prompt, scene_dict, scene_id_fn_base, gen_as_vid=False, rwy_dur=5): |
|
|
|
asset_base_name,_=os.path.splitext(scene_id_fn_base); asset_info_obj={'path':None,'type':'none','error':True,'prompt_used':img_prompt,'error_message':'Asset gen init failed'}; base_img_path_for_rwy=None |
|
base_img_fn = asset_base_name + ("_base_for_video.png" if gen_as_vid else ".png"); base_img_fp = os.path.join(self.output_dir, base_img_fn) |
|
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: |
|
max_r,att_c=2,0 |
|
for att_idx in range(max_r): |
|
att_c=att_idx+1 |
|
try: |
|
logger.info(f"Att {att_c} DALL-E (base img): {img_prompt[:70]}...");oai_client=openai.OpenAI(api_key=self.openai_api_key,timeout=90.0);oai_resp=oai_client.images.generate(model=self.dalle_model,prompt=img_prompt,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid");oai_url=oai_resp.data[0].url;oai_rev_p=getattr(oai_resp.data[0],'revised_prompt',None) |
|
if oai_rev_p:logger.info(f"DALL-E revised: {oai_rev_p[:70]}...") |
|
oai_img_get_resp=requests.get(oai_url,timeout=120);oai_img_get_resp.raise_for_status();oai_pil_img=Image.open(io.BytesIO(oai_img_get_resp.content)) |
|
if oai_pil_img.mode!='RGB':oai_pil_img=oai_pil_img.convert('RGB') |
|
oai_pil_img.save(base_img_fp);logger.info(f"DALL-E base img saved: {base_img_fp}");base_img_path_for_rwy=base_img_fp;asset_info_obj={'path':base_img_fp,'type':'image','error':False,'prompt_used':img_prompt,'revised_prompt':oai_rev_p};break |
|
except openai.RateLimitError as e:logger.warning(f"OpenAI RateLimit Att {att_c}:{e}.Retry...");time.sleep(5*att_c);asset_info_obj['error_message']=str(e) |
|
except openai.APIError as e:logger.error(f"OpenAI APIError Att {att_c}:{e}");asset_info_obj['error_message']=str(e);break |
|
except requests.exceptions.RequestException as e:logger.error(f"Requests Err DALL-E Att {att_c}:{e}");asset_info_obj['error_message']=str(e);break |
|
except Exception as e:logger.error(f"General DALL-E Err Att {att_c}:{e}",exc_info=True);asset_info_obj['error_message']=str(e);break |
|
if asset_info_obj['error']:logger.warning(f"DALL-E failed after {att_c} attempts for base img.") |
|
if asset_info_obj['error'] and self.USE_PEXELS: |
|
logger.info("Trying Pexels for base img.");px_q=scene_dict.get('pexels_search_query_감독',f"{scene_dict.get('emotional_beat','')} {scene_dict.get('setting_description','')}");px_p=self._search_pexels_image(px_q,base_img_fn) |
|
if px_p:base_img_path_for_rwy=px_p;asset_info_obj={'path':px_p,'type':'image','error':False,'prompt_used':f"Pexels:{px_q}"} |
|
else:curr_err=asset_info_obj.get('error_message',"");asset_info_obj['error_message']=(curr_err+" Pexels failed for base.").strip() |
|
if asset_info_obj['error']: |
|
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ph_p_txt=asset_info_obj.get('prompt_used',img_prompt);ph_img_p=self._create_placeholder_image_content(f"[Base Placeholder]{ph_p_txt[:70]}...",base_img_fn) |
|
if ph_img_p:base_img_path_for_rwy=ph_img_p;asset_info_obj={'path':ph_img_p,'type':'image','error':False,'prompt_used':ph_p_txt} |
|
else:curr_err=asset_info_obj.get('error_message',"");asset_info_obj['error_message']=(curr_err+" Base placeholder failed.").strip() |
|
if gen_as_vid: |
|
if not base_img_path_for_rwy:logger.error("RunwayML video: base img failed.");asset_info_obj['error']=True;asset_info_obj['error_message']=(asset_info_obj.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info_obj['type']='none';return asset_info_obj |
|
if self.USE_RUNWAYML: |
|
rwy_vid_p=self._generate_video_clip_with_runwayml(motion_prompt,base_img_path_for_rwy,asset_base_name,rwy_dur) |
|
if rwy_vid_p and os.path.exists(rwy_vid_p):asset_info_obj={'path':rwy_vid_p,'type':'video','error':False,'prompt_used':motion_prompt,'base_image_path':base_img_path_for_rwy} |
|
else:logger.warning(f"RunwayML video failed for {asset_base_name}. Fallback to base img.");asset_info_obj['error']=True;asset_info_obj['error_message']=(asset_info_obj.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info_obj['path']=base_img_path_for_rwy;asset_info_obj['type']='image';asset_info_obj['prompt_used']=img_prompt |
|
else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info_obj['error']=True;asset_info_obj['error_message']=(asset_info_obj.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info_obj['path']=base_img_path_for_rwy;asset_info_obj['type']='image';asset_info_obj['prompt_used']=img_prompt |
|
return asset_info_obj |
|
|
|
def generate_narration_audio(self, narration_text, output_fn="narration_overall.mp3"): |
|
|
|
if not self.USE_ELEVENLABS or not self.elevenlabs_client_instance or not narration_text: logger.info("11L conditions not met. Skip audio."); return None |
|
narration_fp = os.path.join(self.output_dir, output_fn) |
|
try: |
|
logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): \"{narration_text[:70]}...\"") |
|
stream_method = None |
|
if hasattr(self.elevenlabs_client_instance,'text_to_speech') and hasattr(self.elevenlabs_client_instance.text_to_speech,'stream'): stream_method=self.elevenlabs_client_instance.text_to_speech.stream; logger.info("Using 11L .text_to_speech.stream()") |
|
elif hasattr(self.elevenlabs_client_instance,'generate_stream'): stream_method=self.elevenlabs_client_instance.generate_stream; logger.info("Using 11L .generate_stream()") |
|
elif hasattr(self.elevenlabs_client_instance,'generate'): |
|
logger.info("Using 11L .generate() (non-streaming).") |
|
voice_p = Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings_obj) if Voice and self.elevenlabs_voice_settings_obj else str(self.elevenlabs_voice_id) |
|
audio_b = self.elevenlabs_client_instance.generate(text=narration_text,voice=voice_p,model="eleven_multilingual_v2") |
|
with open(narration_fp,"wb") as f_audio: f_audio.write(audio_b); logger.info(f"11L audio (non-stream): {narration_fp}"); return narration_fp |
|
else: logger.error("No recognized 11L audio method."); return None |
|
if stream_method: |
|
voice_stream_params={"voice_id":str(self.elevenlabs_voice_id)} |
|
if self.elevenlabs_voice_settings_obj: |
|
if hasattr(self.elevenlabs_voice_settings_obj,'model_dump'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.model_dump() |
|
elif hasattr(self.elevenlabs_voice_settings_obj,'dict'): voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj.dict() |
|
else: voice_stream_params["voice_settings"]=self.elevenlabs_voice_settings_obj |
|
audio_iter = stream_method(text=narration_text,model_id="eleven_multilingual_v2",**voice_stream_params) |
|
with open(narration_fp,"wb") as f_audio_stream: |
|
for chunk_item in audio_iter: |
|
if chunk_item: f_audio_stream.write(chunk_item) |
|
logger.info(f"11L audio (stream): {narration_fp}"); return narration_fp |
|
except AttributeError as e_11l_attr: logger.error(f"11L SDK AttrError: {e_11l_attr}. SDK/methods changed?", exc_info=True); return None |
|
except Exception as e_11l_gen: logger.error(f"11L audio gen error: {e_11l_gen}", exc_info=True); return None |
|
|
|
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24): |
|
|
|
|
|
if not asset_data_list: logger.warning("No assets for animatic."); return None |
|
processed_moviepy_clips_list = []; narration_audio_clip_mvpy = None; final_video_output_clip = None |
|
logger.info(f"Assembling from {len(asset_data_list)} assets. Target Frame: {self.video_frame_size}.") |
|
|
|
for i_asset, asset_info_item_loop in enumerate(asset_data_list): |
|
path_of_asset, type_of_asset, duration_for_scene = asset_info_item_loop.get('path'), asset_info_item_loop.get('type'), asset_info_item_loop.get('duration', 4.5) |
|
num_of_scene, action_in_key = asset_info_item_loop.get('scene_num', i_asset + 1), asset_info_item_loop.get('key_action', '') |
|
logger.info(f"S{num_of_scene}: Path='{path_of_asset}', Type='{type_of_asset}', Dur='{duration_for_scene}'s") |
|
|
|
if not (path_of_asset and os.path.exists(path_of_asset)): logger.warning(f"S{num_of_scene}: Not found '{path_of_asset}'. Skip."); continue |
|
if duration_for_scene <= 0: logger.warning(f"S{num_of_scene}: Invalid duration ({duration_for_scene}s). Skip."); continue |
|
|
|
active_scene_clip = None |
|
try: |
|
if type_of_asset == 'image': |
|
pil_img_original = Image.open(path_of_asset) |
|
logger.debug(f"S{num_of_scene} (0-Load): Original loaded. Mode:{pil_img_original.mode}, Size:{pil_img_original.size}") |
|
pil_img_original.save(os.path.join(self.output_dir,f"debug_0_ORIGINAL_S{num_of_scene}.png")) |
|
|
|
img_rgba_intermediate = pil_img_original.convert('RGBA') if pil_img_original.mode != 'RGBA' else pil_img_original.copy().convert('RGBA') |
|
logger.debug(f"S{num_of_scene} (1-ToRGBA): Converted to RGBA. Mode:{img_rgba_intermediate.mode}, Size:{img_rgba_intermediate.size}") |
|
img_rgba_intermediate.save(os.path.join(self.output_dir,f"debug_1_AS_RGBA_S{num_of_scene}.png")) |
|
|
|
thumbnailed_img_rgba = img_rgba_intermediate.copy() |
|
resample_filter_pil = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR |
|
thumbnailed_img_rgba.thumbnail(self.video_frame_size, resample_filter_pil) |
|
logger.debug(f"S{num_of_scene} (2-Thumbnail): Thumbnailed RGBA. Mode:{thumbnailed_img_rgba.mode}, Size:{thumbnailed_img_rgba.size}") |
|
thumbnailed_img_rgba.save(os.path.join(self.output_dir,f"debug_2_THUMBNAIL_RGBA_S{num_of_scene}.png")) |
|
|
|
canvas_for_compositing_rgba = Image.new('RGBA', self.video_frame_size, (0,0,0,0)) |
|
pos_x_paste = (self.video_frame_size[0] - thumbnailed_img_rgba.width) // 2 |
|
pos_y_paste = (self.video_frame_size[1] - thumbnailed_img_rgba.height) // 2 |
|
canvas_for_compositing_rgba.paste(thumbnailed_img_rgba, (pos_x_paste, pos_y_paste), thumbnailed_img_rgba) |
|
logger.debug(f"S{num_of_scene} (3-PasteOnRGBA): Image pasted onto transparent RGBA canvas. Mode:{canvas_for_compositing_rgba.mode}, Size:{canvas_for_compositing_rgba.size}") |
|
canvas_for_compositing_rgba.save(os.path.join(self.output_dir,f"debug_3_COMPOSITED_RGBA_S{num_of_scene}.png")) |
|
|
|
final_rgb_image_for_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0)) |
|
if canvas_for_compositing_rgba.mode == 'RGBA': |
|
final_rgb_image_for_pil.paste(canvas_for_compositing_rgba, mask=canvas_for_compositing_rgba.split()[3]) |
|
else: final_rgb_image_for_pil.paste(canvas_for_compositing_rgba) |
|
logger.debug(f"S{num_of_scene} (4-ToRGB): Final RGB image created. Mode:{final_rgb_image_for_pil.mode}, Size:{final_rgb_image_for_pil.size}") |
|
|
|
debug_path_img_pre_numpy = os.path.join(self.output_dir,f"debug_4_PRE_NUMPY_RGB_S{num_of_scene}.png"); |
|
final_rgb_image_for_pil.save(debug_path_img_pre_numpy); |
|
logger.info(f"CRITICAL DEBUG: Saved PRE_NUMPY_RGB_S{num_of_scene} (image fed to NumPy) to {debug_path_img_pre_numpy}") |
|
|
|
numpy_frame_arr = np.array(final_rgb_image_for_pil, dtype=np.uint8) |
|
if not numpy_frame_arr.flags['C_CONTIGUOUS']: numpy_frame_arr = np.ascontiguousarray(numpy_frame_arr, dtype=np.uint8) |
|
logger.debug(f"S{num_of_scene} (5-NumPy): Final NumPy array for MoviePy. Shape:{numpy_frame_arr.shape}, DType:{numpy_frame_arr.dtype}, Flags:{numpy_frame_arr.flags}") |
|
if numpy_frame_arr.size == 0 or numpy_frame_arr.ndim != 3 or numpy_frame_arr.shape[2] != 3: logger.error(f"S{num_of_scene}: Invalid NumPy array shape/size ({numpy_frame_arr.shape}) for ImageClip. Skipping."); continue |
|
|
|
base_image_clip_mvpy = ImageClip(numpy_frame_arr, transparent=False, ismask=False).set_duration(duration_for_scene) |
|
logger.debug(f"S{num_of_scene} (6-ImageClip): Base ImageClip created. Duration: {base_image_clip_mvpy.duration}") |
|
|
|
debug_path_moviepy_frame = os.path.join(self.output_dir,f"debug_7_MOVIEPY_FRAME_S{num_of_scene}.png") |
|
try: base_image_clip_mvpy.save_frame(debug_path_moviepy_frame, t=min(0.1, base_image_clip_mvpy.duration / 2 if base_image_clip_mvpy.duration > 0 else 0.1)) |
|
logger.info(f"CRITICAL DEBUG: Saved frame FROM MOVIEPY ImageClip for S{num_of_scene} to {debug_path_moviepy_frame}") |
|
except Exception as e_save_mvpy_frame: logger.error(f"DEBUG: Error saving frame FROM MOVIEPY ImageClip S{num_of_scene}: {e_save_mvpy_frame}", exc_info=True) |
|
|
|
fx_image_clip_mvpy = base_image_clip_mvpy |
|
try: |
|
scale_end_kb_val = random.uniform(1.03, 1.08) |
|
if duration_for_scene > 0: fx_image_clip_mvpy = base_image_clip_mvpy.fx(vfx.resize, lambda t_val: 1 + (scale_end_kb_val - 1) * (t_val / duration_for_scene)).set_position('center'); logger.debug(f"S{num_of_scene} (8-KenBurns): Ken Burns applied.") |
|
else: logger.warning(f"S{num_of_scene}: Duration zero, skipping Ken Burns.") |
|
except Exception as e_kb_fx_loop: logger.error(f"S{num_of_scene} Ken Burns error: {e_kb_fx_loop}", exc_info=False) |
|
active_scene_clip = fx_image_clip_mvpy |
|
elif type_of_asset == 'video': |
|
|
|
source_video_clip_obj=None |
|
try: |
|
logger.debug(f"S{num_of_scene}: Loading VIDEO asset: {path_of_asset}") |
|
source_video_clip_obj=VideoFileClip(path_of_asset,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False) |
|
temp_video_clip_obj_loop=source_video_clip_obj |
|
if source_video_clip_obj.duration!=duration_for_scene: |
|
if source_video_clip_obj.duration>duration_for_scene:temp_video_clip_obj_loop=source_video_clip_obj.subclip(0,duration_for_scene) |
|
else: |
|
if duration_for_scene/source_video_clip_obj.duration > 1.5 and source_video_clip_obj.duration>0.1:temp_video_clip_obj_loop=source_video_clip_obj.loop(duration=duration_for_scene) |
|
else:temp_video_clip_obj_loop=source_video_clip_obj.set_duration(source_video_clip_obj.duration);logger.info(f"S{num_of_scene} Video clip ({source_video_clip_obj.duration:.2f}s) shorter than target ({duration_for_scene:.2f}s).") |
|
active_scene_clip=temp_video_clip_obj_loop.set_duration(duration_for_scene) |
|
if active_scene_clip.size!=list(self.video_frame_size):active_scene_clip=active_scene_clip.resize(self.video_frame_size) |
|
logger.debug(f"S{num_of_scene}: Video asset processed. Final duration for scene: {active_scene_clip.duration:.2f}s") |
|
except Exception as e_vid_load_loop:logger.error(f"S{num_of_scene} Video load error '{path_of_asset}':{e_vid_load_loop}",exc_info=True);continue |
|
finally: |
|
if source_video_clip_obj and source_video_clip_obj is not active_scene_clip and hasattr(source_video_clip_obj,'close'): |
|
try: source_video_clip_obj.close() |
|
except Exception as e_close_src_vid: logger.warning(f"S{num_of_scene}: Error closing source VideoFileClip: {e_close_src_vid}") |
|
else: logger.warning(f"S{num_of_scene} Unknown asset type '{type_of_asset}'. Skipping."); continue |
|
|
|
if active_scene_clip and action_in_key: |
|
try: |
|
dur_text_overlay_val=min(active_scene_clip.duration-0.5,active_scene_clip.duration*0.8)if active_scene_clip.duration>0.5 else active_scene_clip.duration; start_text_overlay_val=0.25 |
|
if dur_text_overlay_val > 0: |
|
text_clip_for_overlay_obj=TextClip(f"Scene {num_of_scene}\n{action_in_key}",fontsize=self.VIDEO_OVERLAY_FONT_SIZE,color=self.VIDEO_OVERLAY_FONT_COLOR,font=self.active_moviepy_font_name,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(dur_text_overlay_val).set_start(start_text_overlay_val).set_position(('center',0.92),relative=True) |
|
active_scene_clip=CompositeVideoClip([active_scene_clip,text_clip_for_overlay_obj],size=self.video_frame_size,use_bgclip=True) |
|
logger.debug(f"S{num_of_scene}: Text overlay composited.") |
|
else: logger.warning(f"S{num_of_scene}: Text overlay duration zero or negative ({dur_text_overlay_val}). Skipping text overlay.") |
|
except Exception as e_txt_comp_loop:logger.error(f"S{num_of_scene} TextClip compositing error:{e_txt_comp_loop}. Proceeding without text for this scene.",exc_info=True) |
|
if active_scene_clip: processed_moviepy_clips_list.append(active_scene_clip); logger.info(f"S{num_of_scene}: Asset successfully processed. Clip duration: {active_scene_clip.duration:.2f}s. Added to final list.") |
|
except Exception as e_asset_loop_main_exc: logger.error(f"MAJOR UNHANDLED ERROR processing asset for S{num_of_scene} (Path: {path_of_asset}): {e_asset_loop_main_exc}", exc_info=True) |
|
finally: |
|
if active_scene_clip and hasattr(active_scene_clip,'close'): |
|
try: active_scene_clip.close() |
|
except Exception as e_close_active_err: logger.warning(f"S{num_of_scene}: Error closing active_scene_clip in error handler: {e_close_active_err}") |
|
continue |
|
if not processed_moviepy_clips_list: logger.warning("No MoviePy clips were successfully processed. Aborting animatic assembly before concatenation."); return None |
|
transition_duration_val=0.75 |
|
try: |
|
logger.info(f"Concatenating {len(processed_moviepy_clips_list)} processed clips for final animatic."); |
|
if len(processed_moviepy_clips_list)>1: final_video_output_clip=concatenate_videoclips(processed_moviepy_clips_list, padding=-transition_duration_val if transition_duration_val > 0 else 0, method="compose") |
|
elif processed_moviepy_clips_list: final_video_output_clip=processed_moviepy_clips_list[0] |
|
if not final_video_output_clip: logger.error("Concatenation resulted in a None clip. Aborting."); return None |
|
logger.info(f"Concatenated animatic base duration:{final_video_output_clip.duration:.2f}s") |
|
if transition_duration_val > 0 and final_video_output_clip.duration > 0: |
|
if final_video_output_clip.duration > transition_duration_val * 2: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,transition_duration_val).fx(vfx.fadeout,transition_duration_val) |
|
else: final_video_output_clip=final_video_output_clip.fx(vfx.fadein,min(transition_duration_val,final_video_output_clip.duration/2.0)) |
|
logger.debug("Applied fade in/out effects to final composite clip.") |
|
if overall_narration_path and os.path.exists(overall_narration_path) and final_video_output_clip.duration > 0: |
|
try: narration_audio_clip_mvpy=AudioFileClip(overall_narration_path); logger.info(f"Adding overall narration. Video duration: {final_video_output_clip.duration:.2f}s, Narration duration: {narration_audio_clip_mvpy.duration:.2f}s"); final_video_output_clip=final_video_output_clip.set_audio(narration_audio_clip_mvpy); logger.info("Overall narration successfully added to animatic.") |
|
except Exception as e_narr_add_final:logger.error(f"Error adding overall narration to animatic:{e_narr_add_final}",exc_info=True) |
|
elif final_video_output_clip.duration <= 0: logger.warning("Animatic has zero or negative duration before adding audio. Audio will not be added.") |
|
if final_video_output_clip and final_video_output_clip.duration > 0: |
|
final_output_path_str=os.path.join(self.output_dir,output_filename); logger.info(f"Writing final animatic video to: {final_output_path_str} (Target Duration: {final_video_output_clip.duration:.2f}s)") |
|
num_threads = os.cpu_count(); num_threads = num_threads if isinstance(num_threads, int) and num_threads >= 1 else 2 |
|
final_video_output_clip.write_videofile(final_output_path_str, fps=fps, codec='libx264', preset='medium', audio_codec='aac', temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'), remove_temp=True, threads=num_threads, logger='bar', bitrate="5000k", ffmpeg_params=["-pix_fmt", "yuv420p"]) |
|
logger.info(f"Animatic video created successfully: {final_output_path_str}"); return final_output_path_str |
|
else: logger.error("Final animatic clip is invalid or has zero duration. Cannot write video file."); return None |
|
except Exception as e_vid_write_final_op: logger.error(f"Error during final animatic video file writing or composition stage: {e_vid_write_final_op}", exc_info=True); return None |
|
finally: |
|
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` main finally block.") |
|
all_clips_for_closure = processed_moviepy_clips_list[:] |
|
if narration_audio_clip_mvpy: all_clips_for_closure.append(narration_audio_clip_mvpy) |
|
if final_video_output_clip: all_clips_for_closure.append(final_video_output_clip) |
|
for clip_to_close_item_final in all_clips_for_closure: |
|
if clip_to_close_item_final and hasattr(clip_to_close_item_final, 'close'): |
|
try: clip_to_close_item_final.close() |
|
except Exception as e_final_clip_close_op: logger.warning(f"Ignoring error while closing a MoviePy clip ({type(clip_to_close_item_final).__name__}): {e_final_clip_close_op}") |