|
|
|
from PIL import Image, ImageDraw, ImageFont, ImageOps |
|
import base64 |
|
import mimetypes |
|
import numpy as np |
|
import os |
|
import openai |
|
import requests |
|
import io |
|
import time |
|
import random |
|
import logging |
|
|
|
|
|
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip, |
|
CompositeVideoClip, AudioFileClip) |
|
import moviepy.video.fx.all as vfx |
|
|
|
|
|
try: |
|
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS |
|
elif hasattr(Image, 'LANCZOS'): |
|
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS |
|
elif not hasattr(Image, 'ANTIALIAS'): |
|
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different.") |
|
except Exception as e_monkey_patch: |
|
print(f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
ELEVENLABS_CLIENT_IMPORTED = False |
|
ElevenLabsAPIClient = None |
|
Voice = None |
|
VoiceSettings = None |
|
try: |
|
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient |
|
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings |
|
ElevenLabsAPIClient = ImportedElevenLabsClient |
|
Voice = ImportedVoice |
|
VoiceSettings = ImportedVoiceSettings |
|
ELEVENLABS_CLIENT_IMPORTED = True |
|
logger.info("ElevenLabs client components imported successfully.") |
|
except ImportError: |
|
logger.warning("ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled.") |
|
except Exception as e_eleven_import: |
|
logger.warning(f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled.") |
|
|
|
RUNWAYML_SDK_IMPORTED = False |
|
RunwayMLAPIClient = None |
|
try: |
|
from runwayml import RunwayML as ImportedRunwayMLClient |
|
RunwayMLAPIClient = ImportedRunwayMLClient |
|
RUNWAYML_SDK_IMPORTED = True |
|
logger.info("RunwayML SDK imported successfully.") |
|
except ImportError: |
|
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.") |
|
except Exception as e_runway_sdk_import: |
|
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled.") |
|
|
|
|
|
class VisualEngine: |
|
DEFAULT_FONT_SIZE_PIL = 10 |
|
PREFERRED_FONT_SIZE_PIL = 20 |
|
VIDEO_OVERLAY_FONT_SIZE = 30 |
|
VIDEO_OVERLAY_FONT_COLOR = 'white' |
|
|
|
DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold' |
|
PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold' |
|
|
|
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"): |
|
self.output_dir = output_dir |
|
os.makedirs(self.output_dir, exist_ok=True) |
|
|
|
self.font_filename_pil = "DejaVuSans-Bold.ttf" |
|
font_paths_to_try = [ |
|
self.font_filename_pil, |
|
f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}", |
|
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", |
|
f"/System/Library/Fonts/Supplemental/Arial.ttf", |
|
f"C:/Windows/Fonts/arial.ttf", |
|
f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf" |
|
] |
|
self.font_path_pil_resolved = next((p for p in font_paths_to_try if os.path.exists(p)), None) |
|
|
|
self.font_pil = ImageFont.load_default() |
|
self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL |
|
|
|
if self.font_path_pil_resolved: |
|
try: |
|
self.font_pil = ImageFont.truetype(self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL) |
|
self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL |
|
logger.info(f"Pillow font loaded: {self.font_path_pil_resolved} at size {self.current_font_size_pil}.") |
|
|
|
if "dejavu" in self.font_path_pil_resolved.lower(): |
|
self.video_overlay_font = 'DejaVu-Sans-Bold' |
|
elif "liberation" in self.font_path_pil_resolved.lower(): |
|
self.video_overlay_font = 'Liberation-Sans-Bold' |
|
else: |
|
self.video_overlay_font = self.DEFAULT_MOVIEPY_FONT |
|
except IOError as e_font_load: |
|
logger.error(f"Pillow font loading IOError for '{self.font_path_pil_resolved}': {e_font_load}. Using default.") |
|
else: |
|
logger.warning("Custom Pillow font not found. Using default.") |
|
|
|
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False |
|
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024" |
|
self.video_frame_size = (1280, 720) |
|
|
|
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None |
|
self.elevenlabs_voice_id = default_elevenlabs_voice_id |
|
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: |
|
self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True) |
|
else: self.elevenlabs_voice_settings = None |
|
|
|
self.pexels_api_key = None; self.USE_PEXELS = False |
|
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_client_instance = None |
|
|
|
|
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient and os.getenv("RUNWAYML_API_SECRET"): |
|
try: |
|
self.runway_ml_client_instance = RunwayMLAPIClient() |
|
self.USE_RUNWAYML = True |
|
logger.info("RunwayML Client initialized from RUNWAYML_API_SECRET env var at startup.") |
|
except Exception as e_runway_init_startup: |
|
logger.error(f"Initial RunwayML client init failed (env var RUNWAYML_API_SECRET might be invalid): {e_runway_init_startup}") |
|
self.USE_RUNWAYML = False |
|
|
|
logger.info("VisualEngine initialized.") |
|
|
|
|
|
def set_openai_api_key(self, api_key): |
|
self.openai_api_key = api_key; self.USE_AI_IMAGE_GENERATION = bool(api_key) |
|
logger.info(f"DALL-E ({self.dalle_model}) status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}") |
|
|
|
def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None): |
|
self.elevenlabs_api_key = api_key |
|
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret |
|
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient: |
|
try: |
|
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key) |
|
self.USE_ELEVENLABS = bool(self.elevenlabs_client) |
|
logger.info(f"ElevenLabs Client status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})") |
|
except Exception as e: |
|
logger.error(f"ElevenLabs client initialization error: {e}. Service Disabled.", exc_info=True) |
|
self.USE_ELEVENLABS = False; self.elevenlabs_client = None |
|
else: |
|
self.USE_ELEVENLABS = False |
|
logger.info(f"ElevenLabs Service Disabled (API key not provided or SDK import issue).") |
|
|
|
def set_pexels_api_key(self, api_key): |
|
self.pexels_api_key = api_key; self.USE_PEXELS = bool(api_key) |
|
logger.info(f"Pexels Search status: {'Ready' if self.USE_PEXELS else 'Disabled'}") |
|
|
|
def set_runway_api_key(self, api_key): |
|
self.runway_api_key = api_key |
|
if api_key: |
|
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient: |
|
if not self.runway_ml_client_instance: |
|
try: |
|
|
|
|
|
original_env_secret = os.getenv("RUNWAYML_API_SECRET") |
|
if not original_env_secret: |
|
logger.info("Temporarily setting RUNWAYML_API_SECRET from provided key for SDK client init.") |
|
os.environ["RUNWAYML_API_SECRET"] = api_key |
|
|
|
self.runway_ml_client_instance = RunwayMLAPIClient() |
|
self.USE_RUNWAYML = True |
|
logger.info("RunwayML Client initialized successfully using provided API key.") |
|
|
|
if not original_env_secret: |
|
del os.environ["RUNWAYML_API_SECRET"] |
|
logger.info("Cleared temporary RUNWAYML_API_SECRET env var.") |
|
|
|
except Exception as e_client_init: |
|
logger.error(f"RunwayML Client initialization via set_runway_api_key failed: {e_client_init}", exc_info=True) |
|
self.USE_RUNWAYML = False; self.runway_ml_client_instance = None |
|
else: |
|
self.USE_RUNWAYML = True |
|
logger.info("RunwayML Client was already initialized (likely from env var). API key stored.") |
|
else: |
|
logger.warning("RunwayML SDK not imported. API key stored, but integration requires SDK. Service effectively disabled.") |
|
self.USE_RUNWAYML = False |
|
else: |
|
self.USE_RUNWAYML = False; self.runway_ml_client_instance = None |
|
logger.info("RunwayML Service Disabled (no API key provided).") |
|
|
|
|
|
def _image_to_data_uri(self, image_path): |
|
try: |
|
mime_type, _ = mimetypes.guess_type(image_path) |
|
if not mime_type: |
|
ext = os.path.splitext(image_path)[1].lower() |
|
mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg"} |
|
mime_type = mime_map.get(ext, "application/octet-stream") |
|
if mime_type == "application/octet-stream": logger.warning(f"Could not determine MIME type for {image_path}, using default.") |
|
|
|
with open(image_path, "rb") as image_file: |
|
encoded_string = base64.b64encode(image_file.read()).decode('utf-8') |
|
data_uri = f"data:{mime_type};base64,{encoded_string}" |
|
logger.debug(f"Generated data URI for {os.path.basename(image_path)} (first 100 chars): {data_uri[:100]}...") |
|
return data_uri |
|
except FileNotFoundError: |
|
logger.error(f"Image file not found at {image_path} for data URI conversion.") |
|
return None |
|
except Exception as e: |
|
logger.error(f"Error converting image {image_path} to data URI: {e}", exc_info=True) |
|
return None |
|
|
|
def _map_resolution_to_runway_ratio(self, width, height): |
|
ratio_str = f"{width}:{height}" |
|
|
|
supported_ratios_gen4 = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"] |
|
if ratio_str in supported_ratios_gen4: |
|
return ratio_str |
|
|
|
logger.warning(f"Resolution {ratio_str} not directly in Gen-4 supported list. Defaulting to 1280:720.") |
|
return "1280:720" |
|
|
|
def _get_text_dimensions(self, text_content, font_object): |
|
|
|
default_char_height = getattr(font_object, 'size', self.current_font_size_pil) |
|
if not text_content: return 0, default_char_height |
|
try: |
|
if hasattr(font_object,'getbbox'): |
|
bbox=font_object.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1] |
|
return w, h if h > 0 else default_char_height |
|
elif hasattr(font_object,'getsize'): |
|
w,h=font_object.getsize(text_content) |
|
return w, h if h > 0 else default_char_height |
|
else: return int(len(text_content)*default_char_height*0.6),int(default_char_height*1.2) |
|
except Exception as e: logger.warning(f"Error in _get_text_dimensions: {e}"); return int(len(text_content)*self.current_font_size_pil*0.6),int(self.current_font_size_pil*1.2) |
|
|
|
def _create_placeholder_image_content(self, text_description, filename, size=None): |
|
|
|
if size is None: size = self.video_frame_size |
|
img = Image.new('RGB', size, color=(20, 20, 40)); d = ImageDraw.Draw(img); padding = 25 |
|
max_w = size[0] - (2 * padding); lines = [] |
|
if not text_description: text_description = "(Placeholder Image)" |
|
words = text_description.split(); current_line_text = "" |
|
for word_idx, word in enumerate(words): |
|
prospective_addition = word + (" " if word_idx < len(words) - 1 else "") |
|
test_line_text = current_line_text + prospective_addition |
|
current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil) |
|
if current_w == 0 and test_line_text.strip(): current_w = len(test_line_text) * (self.current_font_size_pil * 0.6) |
|
|
|
if current_w <= max_w: current_line_text = test_line_text |
|
else: |
|
if current_line_text.strip(): lines.append(current_line_text.strip()) |
|
current_line_text = prospective_addition |
|
if current_line_text.strip(): lines.append(current_line_text.strip()) |
|
|
|
if not lines and text_description: |
|
avg_char_w, _ = self._get_text_dimensions("W", self.font_pil); avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6) |
|
chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20 |
|
lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else "")) |
|
elif not lines: lines.append("(Placeholder Error)") |
|
|
|
_, single_line_h = self._get_text_dimensions("Ay", self.font_pil); single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2 |
|
max_lines = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1 |
|
max_lines = max(1, max_lines) |
|
|
|
y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0 |
|
for i in range(max_lines): |
|
line_text = lines[i]; line_w, _ = self._get_text_dimensions(line_text, self.font_pil) |
|
if line_w == 0 and line_text.strip(): line_w = len(line_text) * (self.current_font_size_pil * 0.6) |
|
x_pos = (size[0] - line_w) / 2.0 |
|
try: d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180)) |
|
except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'") |
|
y_pos += single_line_h + 2 |
|
if i == 6 and max_lines > 7: |
|
try: d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180)) |
|
except Exception as e_elip: logger.error(f"Pillow d.text ellipsis error: {e_elip}"); break |
|
filepath = os.path.join(self.output_dir, filename) |
|
try: img.save(filepath); return filepath |
|
except Exception as e_save: logger.error(f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True); return None |
|
|
|
def _search_pexels_image(self, query, output_filename_base): |
|
|
|
if not self.USE_PEXELS or not self.pexels_api_key: return None |
|
headers = {"Authorization": self.pexels_api_key} |
|
params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"} |
|
base_name_for_pexels, _ = os.path.splitext(output_filename_base) |
|
pexels_filename = base_name_for_pexels + f"_pexels_{random.randint(1000,9999)}.jpg" |
|
filepath = os.path.join(self.output_dir, pexels_filename) |
|
try: |
|
logger.info(f"Pexels: Searching for '{query}'") |
|
effective_query = " ".join(query.split()[:5]) |
|
params["query"] = effective_query |
|
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20) |
|
response.raise_for_status() |
|
data = response.json() |
|
if data.get("photos") and len(data["photos"]) > 0: |
|
photo_details = data["photos"][0] |
|
photo_url = photo_details.get("src", {}).get("large2x") |
|
if not photo_url: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"); return None |
|
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status() |
|
img_data_pil = Image.open(io.BytesIO(image_response.content)) |
|
if img_data_pil.mode != 'RGB': img_data_pil = img_data_pil.convert('RGB') |
|
img_data_pil.save(filepath); logger.info(f"Pexels: Image saved to {filepath}"); return filepath |
|
else: logger.info(f"Pexels: No photos for '{effective_query}'."); return None |
|
except requests.exceptions.RequestException as e_req: logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False); return None |
|
except Exception as e: logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True); return None |
|
|
|
|
|
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5): |
|
if not self.USE_RUNWAYML or not self.runway_ml_client_instance: |
|
logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.") |
|
return None |
|
if not input_image_path or not os.path.exists(input_image_path): |
|
logger.error(f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}") |
|
return None |
|
|
|
image_data_uri = self._image_to_data_uri(input_image_path) |
|
if not image_data_uri: return None |
|
|
|
runway_duration = 10 if target_duration_seconds >= 8 else 5 |
|
runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1]) |
|
|
|
|
|
base_name_for_runway, _ = os.path.splitext(scene_identifier_filename_base) |
|
output_video_filename = base_name_for_runway + f"_runway_gen4_d{runway_duration}s.mp4" |
|
output_video_filepath = os.path.join(self.output_dir, output_video_filename) |
|
|
|
logger.info(f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'") |
|
try: |
|
|
|
task_submission = self.runway_ml_client_instance.image_to_video.create( |
|
model='gen4_turbo', |
|
prompt_image=image_data_uri, |
|
prompt_text=text_prompt_for_motion, |
|
duration=runway_duration, |
|
ratio=runway_ratio_str, |
|
|
|
|
|
) |
|
task_id = task_submission.id |
|
logger.info(f"Runway Gen-4 task created with ID: {task_id}. Polling for completion...") |
|
|
|
poll_interval_seconds = 10 |
|
max_polling_duration_seconds = 6 * 60 |
|
start_time = time.time() |
|
|
|
while time.time() - start_time < max_polling_duration_seconds: |
|
time.sleep(poll_interval_seconds) |
|
task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id) |
|
logger.info(f"Runway task {task_id} status: {task_details.status}") |
|
|
|
if task_details.status == 'SUCCEEDED': |
|
|
|
output_url = None |
|
if hasattr(task_details, 'output') and task_details.output and hasattr(task_details.output, 'url'): |
|
output_url = task_details.output.url |
|
elif hasattr(task_details, 'artifacts') and task_details.artifacts and isinstance(task_details.artifacts, list) and len(task_details.artifacts) > 0: |
|
first_artifact = task_details.artifacts[0] |
|
if hasattr(first_artifact, 'url'): output_url = first_artifact.url |
|
elif hasattr(first_artifact, 'download_url'): output_url = first_artifact.download_url |
|
|
|
if not output_url: |
|
logger.error(f"Runway task {task_id} SUCCEEDED, but no output URL found. Details: {vars(task_details) if hasattr(task_details,'__dict__') else str(task_details)}") |
|
return None |
|
|
|
logger.info(f"Runway task {task_id} SUCCEEDED. Downloading video from: {output_url}") |
|
video_response = requests.get(output_url, stream=True, timeout=300) |
|
video_response.raise_for_status() |
|
with open(output_video_filepath, 'wb') as f: |
|
for chunk in video_response.iter_content(chunk_size=8192): f.write(chunk) |
|
logger.info(f"Runway Gen-4 video successfully downloaded to: {output_video_filepath}") |
|
return output_video_filepath |
|
|
|
elif task_details.status in ['FAILED', 'ABORTED', 'ERROR']: |
|
error_msg = getattr(task_details,'error_message',None) or getattr(getattr(task_details,'output',None),'error', "Unknown error from Runway task.") |
|
logger.error(f"Runway task {task_id} final status: {task_details.status}. Error: {error_msg}") |
|
return None |
|
|
|
logger.warning(f"Runway task {task_id} timed out polling after {max_polling_duration_seconds} seconds.") |
|
return None |
|
|
|
except AttributeError as ae: |
|
logger.error(f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods/attributes match documentation.", exc_info=True) |
|
return None |
|
except Exception as e_runway_call: |
|
logger.error(f"General error during Runway Gen-4 API call or processing: {e_runway_call}", exc_info=True) |
|
return None |
|
|
|
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None): |
|
|
|
if size is None: size = self.video_frame_size; fp = os.path.join(self.output_dir, filename); tc = None |
|
try: tc = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=size, method='caption').set_duration(duration); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp |
|
except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None |
|
finally: |
|
if tc and hasattr(tc, 'close'): tc.close() |
|
|
|
|
|
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video, |
|
scene_data, scene_identifier_filename_base, |
|
generate_as_video_clip=False, runway_target_duration=5): |
|
|
|
base_name, _ = os.path.splitext(scene_identifier_filename_base) |
|
asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'} |
|
input_image_for_runway_path = None |
|
|
|
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png") |
|
base_image_filepath = os.path.join(self.output_dir, base_image_filename) |
|
|
|
|
|
|
|
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: |
|
|
|
max_r, att_n = 2,0; |
|
for att_n in range(max_r): |
|
try:logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...");cl=openai.OpenAI(api_key=self.openai_api_key,timeout=90.0);r=cl.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid");iu=r.data[0].url;rp=getattr(r.data[0],'revised_prompt',None); |
|
if rp:logger.info(f"DALL-E revised: {rp[:70]}...");ir=requests.get(iu,timeout=120);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content)); |
|
if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(base_image_filepath);logger.info(f"DALL-E base img saved: {base_image_filepath}");input_image_for_runway_path=base_image_filepath;asset_info={'path':base_image_filepath,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':rp};break |
|
except openai.RateLimitError as e:logger.warning(f"OpenAI RateLimit {att_n+1}:{e}.Retry...");time.sleep(5*(att_n+1));asset_info['error_message']=str(e) |
|
except Exception as e:logger.error(f"DALL-E base img error:{e}",exc_info=True);asset_info['error_message']=str(e);break |
|
if asset_info['error']:logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.") |
|
|
|
if asset_info['error'] and self.USE_PEXELS: |
|
logger.info("Trying Pexels for base img.");pqt=scene_data.get('pexels_search_query_감독',f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}");pp=self._search_pexels_image(pqt,base_image_filename); |
|
if pp:input_image_for_runway_path=pp;asset_info={'path':pp,'type':'image','error':False,'prompt_used':f"Pexels:{pqt}"} |
|
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Pexels failed for base.").strip() |
|
|
|
if asset_info['error']: |
|
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ppt=asset_info.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...",base_image_filename); |
|
if php:input_image_for_runway_path=php;asset_info={'path':php,'type':'image','error':False,'prompt_used':ppt} |
|
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Base placeholder failed.").strip() |
|
|
|
|
|
if generate_as_video_clip: |
|
if not input_image_for_runway_path: |
|
logger.error("RunwayML video: base image generation failed entirely. Cannot proceed.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"")+" Base img completely failed, Runway abort.").strip();asset_info['type']='none';return asset_info |
|
if self.USE_RUNWAYML: |
|
video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,input_image_for_runway_path,base_name,runway_target_duration) |
|
if video_path and os.path.exists(video_path):asset_info={'path':video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':input_image_for_runway_path} |
|
else:logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML video step failed; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text |
|
else:logger.warning("RunwayML selected but not enabled/client not ready. Use base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text |
|
return asset_info |
|
|
|
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"): |
|
|
|
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename) |
|
try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None |
|
if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()") |
|
elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()") |
|
elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2"); |
|
with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp |
|
else:logger.error("No 11L audio method.");return None |
|
if asm:vps={"voice_id":str(self.elevenlabs_voice_id)} |
|
if self.elevenlabs_voice_settings: |
|
if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump() |
|
elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict() |
|
else:vps["voice_settings"]=self.elevenlabs_voice_settings |
|
adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps) |
|
with open(afp,"wb")as f: |
|
for c in adi: |
|
if c:f.write(c) |
|
logger.info(f"11L audio (stream): {afp}");return afp |
|
except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None |
|
|
|
|
|
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24): |
|
|
|
if not asset_data_list: logger.warning("No assets for animatic."); return None |
|
processed_clips = []; narration_clip = None; final_clip = None |
|
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.") |
|
|
|
for i, asset_info in enumerate(asset_data_list): |
|
asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5) |
|
scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '') |
|
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s") |
|
|
|
if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue |
|
if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue |
|
|
|
current_scene_mvpy_clip = None |
|
try: |
|
if asset_type == 'image': |
|
pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}") |
|
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy() |
|
thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf) |
|
cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2 |
|
cv_rgba.paste(thumb,(xo,yo),thumb) |
|
final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3]) |
|
dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}") |
|
frame_np = np.array(final_rgb_pil,dtype=np.uint8); |
|
if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8) |
|
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}") |
|
if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue |
|
clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur) |
|
mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}") |
|
clip_fx = clip_base |
|
try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center') |
|
except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False) |
|
current_scene_mvpy_clip = clip_fx |
|
elif asset_type == 'video': |
|
src_clip=None |
|
try: |
|
src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False) |
|
tmp_clip=src_clip |
|
if src_clip.duration!=scene_dur: |
|
if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur) |
|
else: |
|
if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur) |
|
else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).") |
|
current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur) |
|
if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size) |
|
except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue |
|
finally: |
|
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close() |
|
else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue |
|
|
|
if current_scene_mvpy_clip and key_action: |
|
try: |
|
to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration |
|
to_start=0.25 |
|
if to_dur > 0: |
|
txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True) |
|
current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True) |
|
else: logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.") |
|
except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True) |
|
if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.") |
|
except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True) |
|
finally: |
|
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'): |
|
try: current_scene_mvpy_clip.close() |
|
except: pass |
|
|
|
if not processed_clips:logger.warning("No clips processed. Abort.");return None |
|
td=0.75 |
|
try: |
|
logger.info(f"Concatenating {len(processed_clips)} clips."); |
|
if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose") |
|
elif processed_clips:final_clip=processed_clips[0] |
|
if not final_clip:logger.error("Concatenation failed.");return None |
|
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s") |
|
if td>0 and final_clip.duration>0: |
|
if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td) |
|
else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0)) |
|
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0: |
|
try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.") |
|
except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True) |
|
elif final_clip.duration<=0:logger.warning("Video no duration. No audio.") |
|
if final_clip and final_clip.duration>0: |
|
op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)") |
|
final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"]) |
|
logger.info(f"Video created:{op}");return op |
|
else:logger.error("Final clip invalid. No write.");return None |
|
except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None |
|
finally: |
|
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.") |
|
all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else []) |
|
for clip_obj_to_close in all_clips_to_close: |
|
if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'): |
|
try: clip_obj_to_close.close() |
|
except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}") |