File size: 2,321 Bytes
91d2a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# modules/clustering.py
import logging
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

def perform_clustering(df: pd.DataFrame, numeric_cols: list, n_clusters: int):
    if len(numeric_cols) < 2:
        return go.Figure(), go.Figure(), "Clustering requires at least 2 numeric features."
        
    cluster_data = df[numeric_cols].dropna()
    if len(cluster_data) < n_clusters:
        return go.Figure(), go.Figure(), f"Not enough data ({len(cluster_data)}) for {n_clusters} clusters."

    scaler = StandardScaler()
    scaled_data = scaler.fit_transform(cluster_data)

    # --- Elbow Method Plot ---
    wcss = []
    k_range = range(1, 11)
    for i in k_range:
        kmeans_elbow = KMeans(n_clusters=i, init='k-means++', random_state=42, n_init=10)
        kmeans_elbow.fit(scaled_data)
        wcss.append(kmeans_elbow.inertia_)
    
    fig_elbow = go.Figure()
    fig_elbow.add_trace(go.Scatter(x=list(k_range), y=wcss, mode='lines+markers'))
    fig_elbow.update_layout(title='<b>💡 The Elbow Method for Optimal K</b>',
                          xaxis_title='Number of Clusters (K)',
                          yaxis_title='Within-Cluster Sum of Squares (WCSS)')

    # --- K-Means Clustering & Visualization ---
    kmeans = KMeans(n_clusters=n_clusters, init='k-means++', random_state=42, n_init=10).fit(scaled_data)
    cluster_data['Cluster'] = kmeans.labels_.astype(str)
    
    pca = PCA(n_components=2)
    components = pca.fit_transform(scaled_data)
    cluster_data['PCA1'], cluster_data['PCA2'] = components[:, 0], components[:, 1]
    
    fig_cluster = px.scatter(
        cluster_data, x='PCA1', y='PCA2', color='Cluster',
        title=f"<b>K-Means Clustering Visualization (K={n_clusters})</b>",
        labels={'PCA1': 'Principal Component 1', 'PCA2': 'Principal Component 2'},
        color_discrete_sequence=px.colors.qualitative.Vivid
    )
    
    explained_variance = pca.explained_variance_ratio_.sum() * 100
    summary = (f"**Features Used:** `{len(numeric_cols)}` | **Clusters (K):** `{n_clusters}`\n\n"
               f"PCA explains **{explained_variance:.2f}%** of variance.")
    return fig_cluster, fig_elbow, summary