File size: 4,990 Bytes
fb92793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# ui/layout.py
import gradio as gr
from core.config import settings

def create_main_layout():
    """Defines and returns the entire Gradio UI structure."""
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"), title=settings.APP_TITLE) as demo:
        # State object to hold the DataAnalyzer instance
        state_analyzer = gr.State()

        # --- Header ---
        gr.Markdown(f"<h1>{settings.APP_TITLE}</h1>")
        gr.Markdown("A world-class data discovery platform that provides a complete suite of EDA tools and intelligently unlocks specialized analysis modules for Time-Series, Text, and Clustering.")

        # --- Input Row ---
        with gr.Row():
            upload_button = gr.File(label="1. Upload Data File (CSV, Excel)", file_types=[".csv", ".xlsx"], scale=3)
            analyze_button = gr.Button("✨ Generate Intelligence Report", variant="primary", scale=1)
        
        # --- Main Tabs ---
        with gr.Tabs():
            # Tab 1: AI Narrative
            with gr.Tab("πŸ€– AI-Powered Strategy Report", id="tab_ai"):
                ai_report_output = gr.Markdown("### Your AI-generated report will appear here after analysis...")
            
            # Tab 2: Data Profile
            with gr.Tab("πŸ“‹ Data Profile", id="tab_profile"):
                with gr.Accordion("Missing Values Report", open=False):
                    profile_missing_df = gr.DataFrame()
                with gr.Accordion("Numeric Features Summary", open=True):
                    profile_numeric_df = gr.DataFrame()
                with gr.Accordion("Categorical Features Summary", open=True):
                    profile_categorical_df = gr.DataFrame()

            # Tab 3: Overview Visuals
            with gr.Tab("πŸ“Š Overview Visuals", id="tab_overview"):
                with gr.Row():
                    plot_types = gr.Plot()
                    plot_missing = gr.Plot()
                plot_correlation = gr.Plot()

            # Tab 4: Interactive Explorer
            with gr.Tab("🎨 Interactive Explorer", id="tab_explorer"):
                gr.Markdown("### Univariate Analysis")
                with gr.Row():
                    dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True)
                    plot_histogram = gr.Plot()
                gr.Markdown("### Bivariate Analysis")
                with gr.Row():
                    with gr.Column(scale=1):
                        dd_scatter_x = gr.Dropdown(label="X-Axis (Numeric)", interactive=True)
                        dd_scatter_y = gr.Dropdown(label="Y-Axis (Numeric)", interactive=True)
                        dd_scatter_color = gr.Dropdown(label="Color By (Optional)", interactive=True)
                    with gr.Column(scale=2):
                        plot_scatter = gr.Plot()

            # Tab 5: Time-Series Analysis (Conditional)
            with gr.Tab("βŒ› Time-Series Analysis", id="tab_timeseries", visible=False) as tab_timeseries:
                # ... layout for time series ...
                pass # Placeholder for brevity
                
            # Tab 6: Text Analysis (Conditional)
            with gr.Tab("πŸ“ Text Analysis", id="tab_text", visible=False) as tab_text:
                # ... layout for text ...
                pass # Placeholder for brevity

            # Tab 7: Clustering Analysis (Conditional)
            with gr.Tab("🧩 Clustering (K-Means)", id="tab_cluster", visible=False) as tab_cluster:
                with gr.Row():
                    with gr.Column(scale=1):
                        num_clusters = gr.Slider(minimum=2, maximum=10, value=3, step=1, label="Number of Clusters (K)", interactive=True)
                        md_cluster_summary = gr.Markdown()
                    with gr.Column(scale=2):
                        plot_cluster = gr.Plot()
                plot_elbow = gr.Plot()

        # Collect all components that need to be updated
        # This is a bit verbose but necessary for Gradio's output mapping
        components = {
            "state_analyzer": state_analyzer, "upload_button": upload_button, "analyze_button": analyze_button,
            "ai_report_output": ai_report_output, "profile_missing_df": profile_missing_df,
            "profile_numeric_df": profile_numeric_df, "profile_categorical_df": profile_categorical_df,
            "plot_types": plot_types, "plot_missing": plot_missing, "plot_correlation": plot_correlation,
            "dd_hist_col": dd_hist_col, "plot_histogram": plot_histogram, "dd_scatter_x": dd_scatter_x,
            "dd_scatter_y": dd_scatter_y, "dd_scatter_color": dd_scatter_color, "plot_scatter": plot_scatter,
            "tab_timeseries": tab_timeseries, "tab_text": tab_text, "tab_cluster": tab_cluster,
            "num_clusters": num_clusters, "md_cluster_summary": md_cluster_summary,
            "plot_cluster": plot_cluster, "plot_elbow": plot_elbow,
        }

        return demo, components