CognitiveEDA / ui /callbacks.py
mgbam's picture
Update ui/callbacks.py
1dae368 verified
raw
history blame
5.81 kB
# ui/callbacks.py
# -*- coding: utf-8 -*-
#
# PROJECT: CognitiveEDA v5.7 - The QuantumLeap Intelligence Platform
#
# DESCRIPTION: This module contains the core logic for all Gradio event handlers.
# The clustering callback is now updated to include persona profiling.
import gradio as gr
import pandas as pd
import logging
from threading import Thread
import plotly.graph_objects as go
import plotly.express as px
from core.analyzer import DataAnalyzer, engineer_features
from core.llm import GeminiNarrativeGenerator
from core.config import settings
from core.exceptions import DataProcessingError
from modules.clustering import perform_clustering
# --- NEW IMPORT ---
from modules.profiling import profile_clusters
# --- Primary Analysis Chain (Unchanged) ---
def run_initial_analysis(file_obj, progress=gr.Progress(track_tqdm=True)):
if file_obj is None: raise gr.Error("No file uploaded.")
progress(0, desc="Validating configuration...")
if not settings.GOOGLE_API_KEY: raise gr.Error("CRITICAL: GOOGLE_API_KEY is not configured.")
try:
progress(0.1, desc="Loading raw data...")
df_raw = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name)
if len(df_raw) > settings.MAX_UI_ROWS:
df_raw = df_raw.sample(n=settings.MAX_UI_ROWS, random_state=42)
progress(0.5, desc="Applying strategic feature engineering...")
df_engineered = engineer_features(df_raw)
progress(0.8, desc="Instantiating analysis engine...")
analyzer = DataAnalyzer(df_engineered)
progress(1.0, desc="Analysis complete. Generating reports...")
return analyzer
except Exception as e:
logging.error(f"Error in initial analysis: {e}", exc_info=True)
raise gr.Error(f"Analysis Failed: {str(e)}")
def generate_reports_and_visuals(analyzer, progress=gr.Progress(track_tqdm=True)):
if not isinstance(analyzer, DataAnalyzer):
yield (None,) * 14
return
progress(0, desc="Spawning AI report thread...")
ai_report_queue = [""]
def generate_ai_report_threaded(a):
narrative_generator = GeminiNarrativeGenerator(settings.GOOGLE_API_KEY)
ai_report_queue[0] = narrative_generator.generate_narrative(a)
thread = Thread(target=generate_ai_report_threaded, args=(analyzer,))
thread.start()
progress(0.4, desc="Generating reports and visuals...")
meta = analyzer.metadata
missing_df, num_df, cat_df = analyzer.get_profiling_reports()
fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
initial_updates = (
gr.update(value="⏳ Generating AI report..."), gr.update(value=missing_df),
gr.update(value=num_df), gr.update(value=cat_df), gr.update(value=fig_types),
gr.update(value=fig_missing), gr.update(value=fig_corr),
gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None),
gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None),
gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][1] if len(meta['numeric_cols']) > 1 else None),
gr.update(choices=meta['columns']), gr.update(visible=bool(meta['datetime_cols'])),
gr.update(visible=bool(meta['text_cols'])), gr.update(visible=len(meta['numeric_cols']) > 1)
)
yield initial_updates
thread.join()
progress(1.0, desc="AI Report complete!")
final_updates_list = list(initial_updates)
final_updates_list[0] = gr.update(value=ai_report_queue[0])
yield tuple(final_updates_list)
# --- Interactive Explorer Callbacks (Unchanged) ---
def create_histogram(analyzer, col):
if not isinstance(analyzer, DataAnalyzer) or not col: return go.Figure()
return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box")
def create_scatterplot(analyzer, x_col, y_col, color_col):
if not isinstance(analyzer, DataAnalyzer) or not x_col or not y_col: return go.Figure()
df_sample = analyzer.df.sample(n=min(len(analyzer.df), 10000))
return px.scatter(df_sample, x=x_col, y=y_col, color=color_col if color_col else None)
# --- MODIFIED CLUSTERING CALLBACK ---
def update_clustering(analyzer, k):
"""
Orchestrates the full clustering workflow:
1. Runs K-Means clustering.
2. Receives cluster labels.
3. Calls the profiling module to analyze the segments.
4. Returns all results to the UI.
"""
if not isinstance(analyzer, DataAnalyzer):
# Return empty updates for all 5 clustering output components
return go.Figure(), go.Figure(), "", "", go.Figure()
# Step 1: Perform Clustering to get visuals and labels
fig_cluster, fig_elbow, summary, cluster_labels = perform_clustering(
analyzer.df, analyzer.metadata['numeric_cols'], k
)
if cluster_labels.empty:
# Handle cases where clustering fails (e.g., not enough data)
return fig_cluster, fig_elbow, summary, "Clustering failed. No personas to profile.", go.Figure()
# Step 2: Profile the resulting clusters
numeric_to_profile = ['Total_Revenue', 'Quantity_Ordered', 'Hour']
cats_to_profile = ['City', 'Product', 'Day_of_Week']
# Filter to only use columns that actually exist in the engineered dataframe
numeric_to_profile = [c for c in numeric_to_profile if c in analyzer.df.columns]
cats_to_profile = [c for c in cats_to_profile if c in analyzer.df.columns]
md_personas, fig_profile = profile_clusters(
analyzer.df, cluster_labels, numeric_to_profile, cats_to_profile
)
# Step 3: Return all 5 results in the correct order for the UI
return fig_cluster, fig_elbow, summary, md_personas, fig_profile