Spaces:
Sleeping
Sleeping
# Odyssey - The AI Data Science Workspace | |
# A demonstration of a state-of-the-art, AI-native analytic environment. | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import io, os, json, base64, logging, warnings, pickle, uuid | |
from contextlib import redirect_stdout | |
from datetime import datetime | |
# ML & Preprocessing Imports | |
from sklearn.model_selection import cross_val_score, train_test_split | |
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor | |
from sklearn.linear_model import LogisticRegression, LinearRegression | |
from sklearn.metrics import roc_curve, auc, confusion_matrix, r2_score, mean_squared_error | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.impute import KNNImputer | |
# --- Configuration --- | |
warnings.filterwarnings('ignore') | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# --- UI Theme & Icons --- | |
THEME = gr.themes.Monochrome(primary_hue="indigo", secondary_hue="blue", neutral_hue="slate").set( | |
body_background_fill="radial-gradient(circle, rgba(20,20,80,1) 0%, rgba(0,0,10,1) 100%);", | |
block_label_background_fill="rgba(255,255,255,0.05)", | |
block_background_fill="rgba(255,255,255,0.05)", | |
button_primary_background_fill="linear-gradient(90deg, #6A11CB 0%, #2575FC 100%)", | |
button_secondary_background_fill="linear-gradient(90deg, #556270 0%, #4ECDC4 100%)", | |
color_accent_soft="rgba(255,255,255,0.2)" | |
) | |
ICONS = {"overview": "π", "medic": "π§ͺ", "launchpad": "π", "copilot": "π‘", "export": "π"} | |
# --- Core State & Project Management --- | |
def init_state(): | |
"""Initializes a blank global state.""" | |
return { | |
"project_name": None, | |
"df_original": None, | |
"df_modified": None, | |
"metadata": None, | |
"insights": None, | |
"chat_history": [], | |
"dynamic_dashboards": {} | |
} | |
def save_project(state): | |
"""Saves the entire application state to a .osyssey file.""" | |
if not state or not state.get("project_name"): | |
return gr.update(value="Project needs a name to save.", interactive=True) | |
filename = f"{state['project_name']}.odyssey" | |
# Convert dataframes to pickle strings for serialization | |
state_to_save = state.copy() | |
if state_to_save['df_original'] is not None: | |
state_to_save['df_original'] = state_to_save['df_original'].to_pickle() | |
if state_to_save['df_modified'] is not None: | |
state_to_save['df_modified'] = state_to_save['df_modified'].to_pickle() | |
with open(filename, "wb") as f: | |
pickle.dump(state_to_save, f) | |
return gr.update(value=f"Project saved to {filename}", interactive=True) | |
def load_project(file_obj): | |
"""Loads a .odyssey file into the application state.""" | |
if not file_obj: return init_state() | |
with open(file_obj.name, "rb") as f: | |
loaded_state = pickle.load(f) | |
# Unpickle dataframes | |
if loaded_state['df_original'] is not None: | |
loaded_state['df_original'] = pd.read_pickle(io.BytesIO(loaded_state['df_original'])) | |
if loaded_state['df_modified'] is not None: | |
loaded_state['df_modified'] = pd.read_pickle(io.BytesIO(loaded_state['df_modified'])) | |
return loaded_state | |
def prime_data(file_obj, project_name): | |
"""Main function to load a new CSV, analyze it, and set the initial state.""" | |
if not file_obj: return init_state() | |
df = pd.read_csv(file_obj.name) | |
# Smart type conversion | |
for col in df.select_dtypes(include=['object']).columns: | |
try: | |
df[col] = pd.to_datetime(df[col], errors='raise') | |
except (ValueError, TypeError): | |
if 0.5 > df[col].nunique() / len(df) > 0.0: | |
df[col] = df[col].astype('category') | |
metadata = extract_metadata(df) | |
insights = run_helios_engine(df, metadata) | |
return { | |
"project_name": project_name or f"Project_{datetime.now().strftime('%Y%m%d_%H%M')}", | |
"df_original": df, | |
"df_modified": df.copy(), | |
"metadata": metadata, | |
"insights": insights, | |
"chat_history": [], | |
"dynamic_dashboards": {} | |
} | |
def extract_metadata(df): | |
"""Utility to get schema and column types.""" | |
return { | |
'shape': df.shape, | |
'columns': df.columns.tolist(), | |
'numeric': df.select_dtypes(include=np.number).columns.tolist(), | |
'categorical': df.select_dtypes(include=['object', 'category']).columns.tolist(), | |
'datetime': df.select_dtypes(include='datetime').columns.tolist(), | |
'dtypes': df.dtypes.apply(lambda x: x.name).to_dict() | |
} | |
# --- Helios Overview Engine --- | |
def run_helios_engine(df, metadata): | |
"""The proactive analysis engine.""" | |
insights = {} | |
# Missing Data | |
missing = df.isnull().sum() | |
insights['missing_data'] = missing[missing > 0].sort_values(ascending=False) | |
# High Cardinality | |
insights['high_cardinality'] = {c: df[c].nunique() for c in metadata['categorical'] if df[c].nunique() > 50} | |
# Outlier Detection | |
outliers = {} | |
for col in metadata['numeric']: | |
Q1, Q3 = df[col].quantile(0.25), df[col].quantile(0.75) | |
IQR = Q3 - Q1 | |
count = ((df[col] < (Q1 - 1.5 * IQR)) | (df[col] > (Q3 + 1.5 * IQR))).sum() | |
if count > 0: outliers[col] = count | |
insights['outliers'] = outliers | |
# ML Target Suggestions | |
suggestions = [] | |
for col in metadata['categorical']: | |
if df[col].nunique() == 2: suggestions.append(f"{col} (Classification)") | |
for col in metadata['numeric']: | |
if df[col].nunique() > 20: suggestions.append(f"{col} (Regression)") | |
insights['ml_suggestions'] = suggestions | |
return insights | |
# --- Asclepius Data Lab Handlers --- | |
def medic_preview_imputation(state, col, num_method, cat_method): | |
if not col or col not in state['df_modified'].columns: return None | |
df_mod = state['df_modified'].copy() | |
if col in state['metadata']['numeric']: | |
if num_method == 'KNN': | |
imputer = KNNImputer(n_neighbors=5) | |
df_mod[col] = imputer.fit_transform(df_mod[[col]]) | |
else: | |
value = df_mod[col].mean() if num_method == 'mean' else df_mod[col].median() | |
df_mod[col].fillna(value, inplace=True) | |
fig = go.Figure() | |
fig.add_trace(go.Histogram(x=state['df_original'][col], name='Original', opacity=0.7)) | |
fig.add_trace(go.Histogram(x=df_mod[col], name='Imputed', opacity=0.7)) | |
fig.update_layout(barmode='overlay', title_text=f"Distribution for '{col}'", legend_title_text='Dataset') | |
return fig | |
elif col in state['metadata']['categorical']: | |
if cat_method == "Create 'Missing' Category": | |
df_mod[col] = df_mod[col].cat.add_categories("Missing").fillna("Missing") if hasattr(df_mod[col], 'cat') else df_mod[col].fillna("Missing") | |
else: # Mode | |
df_mod[col].fillna(df_mod[col].mode()[0], inplace=True) | |
fig = go.Figure() | |
fig.add_trace(go.Bar(x=state['df_original'][col].value_counts().index, y=state['df_original'][col].value_counts().values, name='Original')) | |
fig.add_trace(go.Bar(x=df_mod[col].value_counts().index, y=df_mod[col].value_counts().values, name='Imputed')) | |
return fig | |
return None | |
# --- Prometheus Launchpad Handlers --- | |
def prometheus_run_model(state, target, features, model_name): | |
if not target or not features: return None, None, "Select target and features." | |
df = state['df_modified'].copy() | |
df.dropna(subset=[target] + features, inplace=True) | |
le_map = {} | |
for col in [target] + features: | |
if df[col].dtype.name in ['category', 'object']: | |
le = LabelEncoder() | |
df[col] = le.fit_transform(df[col]) | |
le_map[col] = le | |
X, y = df[features], df[target] | |
problem_type = "Classification" if y.nunique() <= 10 else "Regression" | |
MODELS = { | |
"Classification": {"Random Forest": RandomForestClassifier, "Logistic Regression": LogisticRegression}, | |
"Regression": {"Random Forest": RandomForestRegressor, "Linear Regression": LinearRegression} | |
} | |
if model_name not in MODELS[problem_type]: return None, None, "Invalid model for this problem type." | |
model = MODELS[problem_type][model_name](random_state=42) | |
if problem_type == "Classification": | |
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy') | |
report = f"**Cross-Validated Accuracy:** {np.mean(scores):.3f} Β± {np.std(scores):.3f}" | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) | |
model.fit(X_train, y_train) | |
# ROC Curve | |
y_prob = model.predict_proba(X_test)[:, 1] | |
fpr, tpr, _ = roc_curve(y_test, y_prob) | |
roc_auc = auc(fpr, tpr) | |
fig1 = go.Figure(data=go.Scatter(x=fpr, y=tpr, mode='lines', name=f'ROC curve (area = {roc_auc:.2f})')) | |
fig1.add_scatter(x=[0, 1], y=[0, 1], mode='lines', line=dict(dash='dash'), name='Random Chance') | |
fig1.update_layout(title="ROC Curve") | |
# Feature Importance | |
if hasattr(model, 'feature_importances_'): | |
fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False) | |
fig2 = px.bar(fi, title="Feature Importance") | |
else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available for this model)") | |
return fig1, fig2, report | |
else: # Regression | |
scores = cross_val_score(model, X, y, cv=5, scoring='r2') | |
report = f"**Cross-Validated RΒ² Score:** {np.mean(scores):.3f} Β± {np.std(scores):.3f}" | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) | |
model.fit(X_train, y_train) | |
preds = model.predict(X_test) | |
# Residuals Plot | |
residuals = y_test - preds | |
fig1 = px.scatter(x=preds, y=residuals, title="Residuals vs. Predicted Plot", labels={'x': 'Predicted Values', 'y': 'Residuals'}) | |
fig1.add_hline(y=0, line_dash="dash") | |
# Feature Importance | |
if hasattr(model, 'feature_importances_'): | |
fi = pd.Series(model.feature_importances_, index=features).sort_values(ascending=False) | |
fig2 = px.bar(fi, title="Feature Importance") | |
else: fig2 = go.Figure().update_layout(title="Feature Importance (Not available for this model)") | |
return fig1, fig2, report | |
# --- Athena Co-pilot Handlers --- | |
def athena_respond(user_message, history, state, api_key): | |
# Main co-pilot logic | |
pass # This would contain the full logic from previous examples | |
def render_dynamic_dashboard(state, dashboard_id): | |
"""Renders a dynamically generated dashboard from the state.""" | |
# This is a placeholder for the advanced dashboard rendering logic. | |
# In a real scenario, this would execute the Gradio code string stored in state. | |
if dashboard_id in state['dynamic_dashboards']: | |
# This is where we would dynamically create the Gradio components | |
# For this example, we'll return a placeholder | |
return gr.Markdown(f"### Dashboard: {dashboard_id}\n(Dynamic rendering placeholder)") | |
return gr.Markdown("Dashboard not found.") | |
# --- UI Builder Functions --- | |
def build_ui(): | |
with gr.Blocks(theme=THEME, title="Odyssey AI Data Workspace") as demo: | |
state = gr.State(init_state()) | |
with gr.Row(): | |
# Left Sidebar - Command Center | |
with gr.Column(scale=1): | |
gr.Markdown("# π¦ Odyssey") | |
with gr.Accordion("π Project", open=True): | |
project_name_input = gr.Textbox(label="Project Name", value="New_Project") | |
file_input = gr.File(label="Upload CSV", file_types=[".csv"]) | |
with gr.Row(): | |
save_btn = gr.Button("Save") | |
load_btn = gr.UploadButton("Load .odyssey") | |
project_status = gr.Markdown() | |
# Navigation buttons | |
overview_btn = gr.Button(f"{ICONS['overview']} Helios Overview") | |
medic_btn = gr.Button(f"{ICONS['medic']} Asclepius Data Lab") | |
launchpad_btn = gr.Button(f"{ICONS['launchpad']} Prometheus Launchpad") | |
copilot_btn = gr.Button(f"{ICONS['copilot']} Athena Co-pilot") | |
export_btn = gr.Button(f"{ICONS['export']} Export Report") | |
# Global Info | |
with gr.Accordion("Global Info", open=False): | |
file_info_md = gr.Markdown("No file loaded.") | |
# Right Panel - Main Workspace | |
with gr.Column(scale=4): | |
# --- Helios Overview Panel --- | |
with gr.Column(visible=True) as overview_panel: | |
gr.Markdown(f"# {ICONS['overview']} Helios Overview") | |
gr.Markdown("A proactive, high-level summary of your dataset.") | |
# Interactive dashboard components would go here | |
helios_report_md = gr.Markdown("Upload data to begin analysis.") | |
# --- Asclepius Data Lab Panel --- | |
with gr.Column(visible=False) as medic_panel: | |
gr.Markdown(f"# {ICONS['medic']} Asclepius Data Lab") | |
gr.Markdown("Interactively clean and prepare your data.") | |
# UI components for Data Medic | |
medic_col_select = gr.Dropdown(label="Select Column to Clean") | |
with gr.Row(): | |
medic_num_method = gr.Radio(['mean', 'median', 'KNN'], label="Numeric Imputation", value='mean') | |
medic_cat_method = gr.Radio(['mode', "Create 'Missing' Category"], label="Categorical Imputation", value='mode') | |
medic_preview_plot = gr.Plot() | |
medic_apply_btn = gr.Button("Apply Changes to Session") | |
# --- Prometheus Launchpad Panel --- | |
with gr.Column(visible=False) as launchpad_panel: | |
gr.Markdown(f"# {ICONS['launchpad']} Prometheus Launchpad") | |
gr.Markdown("Train, evaluate, and understand predictive models.") | |
# UI components for Launchpad | |
with gr.Row(): | |
lp_target = gr.Dropdown(label="π― Target") | |
lp_features = gr.Multiselect(label="β¨ Features") | |
lp_model = gr.Dropdown(choices=["Random Forest", "Logistic Regression", "Linear Regression"], label="π§ Model") | |
lp_run_btn = gr.Button("π Launch Model Training (with CV)") | |
lp_report_md = gr.Markdown() | |
with gr.Row(): | |
lp_fig1 = gr.Plot() | |
lp_fig2 = gr.Plot() | |
# --- Athena Co-pilot Panel --- | |
with gr.Column(visible=False) as copilot_panel: | |
gr.Markdown(f"# {ICONS['copilot']} Athena Co-pilot") | |
gr.Markdown("Your collaborative AI data scientist. Ask anything.") | |
# Chatbot UI | |
chatbot = gr.Chatbot(height=500) | |
with gr.Accordion("AI Generated Dashboard", open=False) as dynamic_dash_accordion: | |
dynamic_dash_output = gr.Group() # Placeholder for dynamic content | |
chat_input = gr.Textbox(label="Your Request") | |
chat_submit = gr.Button("Send", variant="primary") | |
# --- Event Handling --- | |
# Panel Navigation | |
panels = [overview_panel, medic_panel, launchpad_panel, copilot_panel] | |
def switch_panel(btn_idx): | |
return [gr.update(visible=i == btn_idx) for i in range(len(panels))] | |
overview_btn.click(lambda: switch_panel(0), None, panels) | |
medic_btn.click(lambda: switch_panel(1), None, panels) | |
launchpad_btn.click(lambda: switch_panel(2), None, panels) | |
copilot_btn.click(lambda: switch_panel(3), None, panels) | |
# File Upload Logic | |
def on_upload(state, file, name): | |
new_state = prime_data(file, name) | |
# Update all UI components based on the new state | |
helios_md = "No data loaded." | |
if new_state.get('insights'): | |
helios_md = f"### {ICONS['ml_suggestions']} ML Suggestions\n" + "\n".join([f"- `{s}`" for s in new_state['insights']['ml_suggestions']]) | |
# ... Add more sections for a full report | |
file_info = f"**File:** `{os.path.basename(file.name)}`\n\n**Shape:** `{new_state['metadata']['shape']}`" | |
all_cols = new_state['metadata']['columns'] | |
missing_cols = new_state['insights']['missing_data'].index.tolist() | |
return new_state, helios_md, file_info, gr.update(choices=missing_cols), gr.update(choices=all_cols), gr.update(choices=all_cols) | |
file_input.upload(on_upload, [state, file_input, project_name_input], [state, helios_report_md, file_info_md, medic_col_select, lp_target, lp_features]) | |
# Project Management | |
save_btn.click(save_project, state, project_status) | |
# Asclepius Live Preview | |
medic_col_select.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot) | |
medic_num_method.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot) | |
medic_cat_method.change(medic_preview_imputation, [state, medic_col_select, medic_num_method, medic_cat_method], medic_preview_plot) | |
# Prometheus Model Training | |
lp_run_btn.click(prometheus_run_model, [state, lp_target, lp_features, lp_model], [lp_fig1, lp_fig2, lp_report_md]) | |
return demo | |
# --- Main Execution --- | |
if __name__ == "__main__": | |
app = build_ui() | |
app.launch(debug=True) |