Spaces:
Sleeping
Sleeping
# analysis_modules.py | |
import pandas as pd | |
import plotly.express as px | |
from statsmodels.tsa.seasonal import seasonal_decompose | |
from statsmodels.tsa.stattools import adfuller | |
from sklearn.cluster import KMeans | |
from wordcloud import WordCloud | |
import matplotlib.pyplot as plt | |
import io | |
import base64 | |
# --- Time-Series Module --- | |
def analyze_time_series(df: pd.DataFrame, date_col: str, value_col: str): | |
"""Performs time-series decomposition and stationarity testing.""" | |
df[date_col] = pd.to_datetime(df[date_col]) | |
ts_df = df.set_index(date_col)[value_col].dropna() | |
# Decomposition | |
decomposition = seasonal_decompose(ts_df, model='additive', period=12) # Assuming monthly data | |
fig_decomp = px.line(pd.DataFrame({'trend': decomposition.trend, 'seasonal': decomposition.seasonal, 'residual': decomposition.resid}), | |
title=f"Time-Series Decomposition of {value_col}") | |
# Stationarity Test (ADF) | |
adf_result = adfuller(ts_df) | |
adf_md = f""" | |
### Stationarity Analysis (ADF Test) | |
- **Test Statistic:** `{adf_result[0]:.4f}` | |
- **p-value:** `{adf_result[1]:.4f}` | |
- **Conclusion:** The series is likely **{'stationary' if adf_result[1] < 0.05 else 'non-stationary'}**. | |
""" | |
return fig_decomp, adf_md | |
# --- Text Analysis Module --- | |
def generate_word_cloud(df: pd.DataFrame, text_col: str): | |
"""Generates a word cloud from a text column.""" | |
text = ' '.join(df[text_col].dropna().astype(str)) | |
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text) | |
# Convert matplotlib plot to a data URI for Gradio | |
buf = io.BytesIO() | |
wordcloud.to_image().save(buf, format='png') | |
img_str = "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode('utf-8') | |
return img_str | |
# --- Clustering Module --- | |
def perform_clustering(df: pd.DataFrame, numeric_cols: list, n_clusters: int = 4): | |
"""Performs K-Means clustering and returns a scatter plot.""" | |
cluster_data = df[numeric_cols].dropna() | |
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init='auto').fit(cluster_data) | |
cluster_data['Cluster'] = kmeans.labels_.astype(str) | |
# For visualization, we'll use the first two numeric columns | |
fig_cluster = px.scatter(cluster_data, x=numeric_cols[0], y=numeric_cols[1], color='Cluster', | |
title=f"K-Means Clustering (k={n_clusters})") | |
return fig_cluster |