Spaces:
Sleeping
Sleeping
# ui/callbacks.py | |
# -*- coding: utf-8 -*- | |
# | |
# PROJECT: CognitiveEDA v5.2 - The QuantumLeap Intelligence Platform | |
# | |
# DESCRIPTION: The "Controller" logic of the application. This module contains | |
# the Python functions that execute when Gradio events are triggered. | |
# It is designed to be completely decoupled from the UI definition | |
# and event attachment process. | |
import gradio as gr | |
import pandas as pd | |
import logging | |
from threading import Thread | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from core.analyzer import DataAnalyzer | |
from core.llm import GeminiNarrativeGenerator | |
from core.config import settings | |
from core.exceptions import DataProcessingError | |
from modules.clustering import perform_clustering | |
from modules.text import generate_word_cloud | |
from modules.timeseries import analyze_time_series | |
# --- Primary Analysis Chain --- | |
def run_initial_analysis(file_obj, progress=gr.Progress(track_tqdm=True)): | |
""" | |
Phase 1 of the analysis: Fast, synchronous tasks. | |
Validates inputs, loads data, and creates the core DataAnalyzer object. | |
Args: | |
file_obj: The uploaded file object from Gradio. | |
progress: The Gradio progress tracker. | |
Returns: | |
The instantiated DataAnalyzer object, which will update the gr.State. | |
Returns None if any validation or processing fails. | |
""" | |
# 1. Input Validation | |
if file_obj is None: | |
raise gr.Error("No file uploaded. Please upload a CSV or Excel file.") | |
# 2. Runtime Configuration Validation | |
progress(0, desc="Validating configuration...") | |
if not settings.GOOGLE_API_KEY: | |
logging.error("Analysis attempted without GOOGLE_API_KEY set.") | |
raise gr.Error( | |
"CRITICAL: GOOGLE_API_KEY is not configured. " | |
"Please add it to your .env file or as a platform secret and restart." | |
) | |
try: | |
# 3. Data Loading | |
progress(0.2, desc="Loading and parsing data file...") | |
df = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name) | |
if len(df) > settings.MAX_UI_ROWS: | |
df = df.sample(n=settings.MAX_UI_ROWS, random_state=42) | |
logging.info(f"DataFrame sampled down to {settings.MAX_UI_ROWS} rows.") | |
# 4. Core Analyzer Instantiation | |
progress(0.7, desc="Instantiating analysis engine...") | |
analyzer = DataAnalyzer(df) | |
progress(1.0, desc="Initial analysis complete.") | |
return analyzer | |
except DataProcessingError as e: | |
logging.error(f"User-facing data processing error: {e}", exc_info=True) | |
raise gr.Error(str(e)) | |
except Exception as e: | |
logging.error(f"A critical unhandled error occurred during initial analysis: {e}", exc_info=True) | |
raise gr.Error(f"Analysis Failed! An unexpected error occurred: {str(e)}") | |
def generate_reports_and_visuals(analyzer, progress=gr.Progress(track_tqdm=True)): | |
""" | |
Phase 2 of the analysis: Slower, multi-stage tasks. | |
This generator function yields UI updates as they become available. | |
Args: | |
analyzer: The DataAnalyzer object from the gr.State. | |
progress: The Gradio progress tracker. | |
Yields: | |
A dictionary of Gradio updates to populate the dashboard. | |
""" | |
# Guard clause: Do nothing if the initial analysis failed. | |
if not isinstance(analyzer, DataAnalyzer): | |
logging.warning("generate_reports_and_visuals called without a valid analyzer. Aborting.") | |
return {} | |
# 1. Start AI narrative generation in a background thread | |
progress(0, desc="Spawning AI report thread...") | |
ai_report_queue = [""] # Use a mutable list to pass string by reference | |
def generate_ai_report_threaded(analyzer_instance): | |
narrative_generator = GeminiNarrativeGenerator(api_key=settings.GOOGLE_API_KEY) | |
ai_report_queue[0] = narrative_generator.generate_narrative(analyzer_instance) | |
thread = Thread(target=generate_ai_report_threaded, args=(analyzer,)) | |
thread.start() | |
# 2. Generate standard reports and visuals (this is fast) | |
progress(0.4, desc="Generating data profiles and visuals...") | |
meta = analyzer.metadata | |
missing_df, num_df, cat_df = analyzer.get_profiling_reports() | |
fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals() | |
# 3. Yield the first set of updates to populate the main dashboard immediately | |
progress(0.8, desc="Building initial dashboard...") | |
initial_updates = { | |
"ai_report_output": gr.update(value="⏳ Generating AI-powered report in the background... The main dashboard is ready now."), | |
"profile_missing_df": gr.update(value=missing_df), | |
"profile_numeric_df": gr.update(value=num_df), | |
"profile_categorical_df": gr.update(value=cat_df), | |
"plot_types": gr.update(value=fig_types), | |
"plot_missing": gr.update(value=fig_missing), | |
"plot_correlation": gr.update(value=fig_corr), | |
"dd_hist_col": gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None), | |
"dd_scatter_x": gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None), | |
"dd_scatter_y": gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][1] if len(meta['numeric_cols']) > 1 else None), | |
"dd_scatter_color": gr.update(choices=meta['columns']), | |
"tab_timeseries": gr.update(visible=bool(meta['datetime_cols'])), | |
"tab_text": gr.update(visible=bool(meta['text_cols'])), | |
"tab_cluster": gr.update(visible=len(meta['numeric_cols']) > 1), | |
} | |
yield initial_updates | |
# 4. Wait for the AI thread to complete | |
thread.join() | |
progress(1.0, desc="AI Report complete!") | |
# 5. Yield the final update, now including the AI-generated report | |
final_updates = initial_updates.copy() | |
final_updates["ai_report_output"] = ai_report_queue[0] | |
yield final_updates | |
# --- Interactive Explorer Callbacks --- | |
def create_histogram(analyzer, col): | |
"""Generates a histogram for a selected numeric column.""" | |
if not isinstance(analyzer, DataAnalyzer) or not col: | |
return go.Figure().update_layout(title="Select a column to generate a histogram") | |
return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box", template="plotly_white") | |
def create_scatterplot(analyzer, x_col, y_col, color_col): | |
"""Generates a scatter plot for selected X, Y, and optional color columns.""" | |
if not isinstance(analyzer, DataAnalyzer) or not x_col or not y_col: | |
return go.Figure().update_layout(title="Select X and Y axes to generate a scatter plot") | |
# Use a subset for performance on large datasets | |
df_sample = analyzer.df | |
if len(analyzer.df) > 10000: | |
df_sample = analyzer.df.sample(n=10000, random_state=42) | |
return px.scatter( | |
df_sample, x=x_col, y=y_col, color=color_col if color_col else None, | |
title=f"<b>Scatter Plot: {x_col} vs. {y_col}</b>", template="plotly_white" | |
) | |
# --- Specialized Module Callbacks --- | |
def update_clustering(analyzer, k): | |
"""Callback for the clustering module.""" | |
if not isinstance(analyzer, DataAnalyzer): | |
return gr.update(), gr.update(), gr.update(value="Run analysis first.") | |
# Delegate the heavy lifting to the specialized module | |
fig_cluster, fig_elbow, summary = perform_clustering(analyzer.df, analyzer.metadata['numeric_cols'], k) | |
return fig_cluster, fig_elbow, summary | |
# Add other specialized callbacks for text and time-series here if needed. | |
# For example, if you add the dropdowns and plots to the layout: | |
# | |
# def update_timeseries(analyzer, date_col, value_col): | |
# if not isinstance(analyzer, DataAnalyzer): | |
# return gr.update(), gr.update(value="Run analysis first.") | |
# fig, md = analyze_time_series(analyzer.df, date_col, value_col) | |
# return fig, md | |
# | |
# def update_text(analyzer, text_col): | |
# if not isinstance(analyzer, DataAnalyzer): | |
# return gr.update() | |
# return generate_word_cloud(analyzer.df, text_col) |