Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
import io | |
from scipy import stats | |
import warnings | |
import google.generativeai as genai | |
import os | |
from dotenv import load_dotenv | |
import logging | |
import json | |
from contextlib import redirect_stdout | |
# --- Configuration --- | |
warnings.filterwarnings('ignore') | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# --- Helper Functions --- | |
def safe_exec(code_string: str, local_vars: dict) -> tuple: | |
"""Safely execute a string of Python code and capture its output.""" | |
output_buffer = io.StringIO() | |
try: | |
with redirect_stdout(output_buffer): | |
exec(code_string, globals(), local_vars) | |
stdout_output = output_buffer.getvalue() | |
fig = local_vars.get('fig', None) | |
return stdout_output, fig, None | |
except Exception as e: | |
error_message = f"Execution Error: {str(e)}" | |
logging.error(f"Error executing AI-generated code: {error_message}") | |
return None, None, error_message | |
# --- Core Data Processing --- | |
def load_and_process_file(file_obj, state_dict): | |
"""Loads a CSV file and performs initial processing, updating the global state.""" | |
if file_obj is None: | |
return None, "Please upload a file.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
try: | |
df = pd.read_csv(file_obj.name) | |
# Attempt to convert object columns to datetime | |
for col in df.select_dtypes(include=['object']).columns: | |
try: | |
df[col] = pd.to_datetime(df[col], errors='raise') | |
logging.info(f"Successfully converted column '{col}' to datetime.") | |
except (ValueError, TypeError): | |
continue | |
metadata = extract_dataset_metadata(df) | |
state_dict = { | |
'df': df, | |
'metadata': metadata, | |
'filename': os.path.basename(file_obj.name) | |
} | |
# Update UI elements dynamically | |
update_args = { | |
'choices': metadata['columns'], | |
'value': None, | |
'interactive': True | |
} | |
# Check for time series tab visibility | |
time_series_visible = len(metadata['datetime_cols']) > 0 | |
return ( | |
state_dict, | |
f"β Loaded `{state_dict['filename']}` ({metadata['shape'][0]} rows, {metadata['shape'][1]} cols)", | |
gr.update(**update_args), gr.update(**update_args), gr.update(**update_args), | |
gr.update(choices=metadata['numeric_cols'], value=None, interactive=True), | |
gr.update(choices=metadata['datetime_cols'], value=None, interactive=True), | |
gr.update(visible=time_series_visible), # Show/hide Time Series tab | |
gr.update(visible=True) # Show Chatbot tab | |
) | |
except Exception as e: | |
logging.error(f"Error loading file: {e}") | |
return state_dict, f"β Error: {e}", gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=False), gr.update(visible=False) | |
def extract_dataset_metadata(df: pd.DataFrame) -> dict: | |
"""Extracts comprehensive metadata from a DataFrame.""" | |
rows, cols = df.shape | |
columns = df.columns.tolist() | |
numeric_cols = df.select_dtypes(include=np.number).columns.tolist() | |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist() | |
datetime_cols = df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist() | |
missing_data = df.isnull().sum() | |
data_quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0 | |
return { | |
'shape': (rows, cols), | |
'columns': columns, | |
'numeric_cols': numeric_cols, | |
'categorical_cols': categorical_cols, | |
'datetime_cols': datetime_cols, | |
'dtypes': df.dtypes.to_string(), | |
'missing_data': missing_data.to_dict(), | |
'data_quality': data_quality, | |
'head': df.head().to_string() | |
} | |
# --- Tab 1: AI Overview --- | |
def analyze_dataset_overview(state_dict, api_key: str): | |
"""Generates an AI-powered narrative overview of the dataset.""" | |
if not state_dict: | |
return "β Please upload a dataset first.", "", 0 | |
if not api_key: | |
return "β Please enter your Gemini API key.", "", 0 | |
metadata = state_dict['metadata'] | |
# Create prompt for Gemini | |
prompt = f""" | |
You are an expert data analyst and storyteller. Your task is to provide a high-level, engaging overview of a dataset based on its metadata. | |
**Dataset Metadata:** | |
- **Shape:** {metadata['shape'][0]} rows, {metadata['shape'][1]} columns | |
- **Column Names:** {', '.join(metadata['columns'])} | |
- **Numeric Columns:** {', '.join(metadata['numeric_cols'])} | |
- **Categorical Columns:** {', '.join(metadata['categorical_cols'])} | |
- **Datetime Columns:** {', '.join(metadata['datetime_cols'])} | |
- **Data Quality (Non-missing values):** {metadata['data_quality']}% | |
- **First 5 rows:** | |
{metadata['head']} | |
**Your Task:** | |
Based on the metadata, generate a report in Markdown format. Use emojis to make it visually appealing. The report should have the following sections: | |
# π AI-Powered Dataset Overview | |
## π€ What is this dataset likely about? | |
(Predict the domain and purpose of the dataset, e.g., "This appears to be customer transaction data for an e-commerce platform.") | |
## π‘ Potential Key Questions to Explore | |
- (Suggest 3-4 interesting business or research questions the data could answer.) | |
- (Example: "Which products are most frequently purchased together?") | |
## π Potential Analyses & Visualizations | |
- (List 3-4 types of analyses that would be valuable.) | |
- (Example: "Time series analysis of sales to identify seasonality.") | |
## β οΈ Data Quality & Potential Issues | |
- (Briefly comment on the data quality score and mention if the presence of datetime columns is a good sign for certain analyses.) | |
""" | |
try: | |
genai.configure(api_key=api_key) | |
model = genai.GenerativeModel('gemini-1.5-flash') | |
response = model.generate_content(prompt) | |
story = response.text | |
except Exception as e: | |
story = f"## β οΈ AI Generation Failed\n**Error:** {str(e)}\n\nPlease check your API key and network connection. A fallback analysis is provided below.\n\n" \ | |
f"### Fallback Analysis\nThis dataset contains **{metadata['shape'][0]}** records and **{metadata['shape'][1]}** features. " \ | |
f"It includes **{len(metadata['numeric_cols'])}** numeric, **{len(metadata['categorical_cols'])}** categorical, " \ | |
f"and **{len(metadata['datetime_cols'])}** time-based columns. The overall data quality is **{metadata['data_quality']}%**, " \ | |
f"which is a good starting point for analysis." | |
# Basic Info Summary | |
basic_info = f""" | |
π **File:** `{state_dict.get('filename', 'N/A')}` | |
π **Size:** {metadata['shape'][0]:,} rows Γ {metadata['shape'][1]} columns | |
π’ **Features:** | |
β’ **Numeric:** {len(metadata['numeric_cols'])} | |
β’ **Categorical:** {len(metadata['categorical_cols'])} | |
β’ **DateTime:** {len(metadata['datetime_cols'])} | |
π― **Data Quality:** {metadata['data_quality']}% | |
""" | |
return story, basic_info, metadata['data_quality'] | |
# --- Tab 2: Univariate Analysis --- | |
def generate_univariate_plot(column_name, state_dict): | |
"""Generates plots for a single selected variable.""" | |
if not column_name or not state_dict: | |
return None, "Select a column to analyze." | |
df = state_dict['df'] | |
metadata = state_dict['metadata'] | |
fig = None | |
summary = "" | |
if column_name in metadata['numeric_cols']: | |
fig = make_subplots(rows=1, cols=2, subplot_titles=("Histogram", "Box Plot")) | |
fig.add_trace(go.Histogram(x=df[column_name], name="Histogram"), row=1, col=1) | |
fig.add_trace(go.Box(y=df[column_name], name="Box Plot"), row=1, col=2) | |
fig.update_layout(title_text=f"Distribution of '{column_name}'", showlegend=False) | |
summary = df[column_name].describe().to_frame().to_markdown() | |
elif column_name in metadata['categorical_cols']: | |
top_n = 20 | |
counts = df[column_name].value_counts() | |
title = f"Top {min(top_n, len(counts))} Categories for '{column_name}'" | |
fig = px.bar(counts.nlargest(top_n), title=title, labels={'index': column_name, 'value': 'Count'}) | |
fig.update_layout(showlegend=False) | |
summary = counts.to_frame().to_markdown() | |
elif column_name in metadata['datetime_cols']: | |
counts = df[column_name].dt.to_period("M").value_counts().sort_index() | |
fig = px.line(x=counts.index.to_timestamp(), y=counts.values, title=f"Records over Time for '{column_name}'") | |
fig.update_layout(xaxis_title="Time", yaxis_title="Record Count") | |
summary = df[column_name].describe(datetime_is_numeric=True).to_frame().to_markdown() | |
return fig, summary | |
# --- Tab 3: Bivariate Analysis --- | |
def generate_bivariate_plot(x_col, y_col, state_dict): | |
"""Generates plots to explore the relationship between two variables.""" | |
if not x_col or not y_col or not state_dict: | |
return None, "Select two columns to analyze." | |
if x_col == y_col: | |
return None, "Please select two different columns." | |
df = state_dict['df'] | |
metadata = state_dict['metadata'] | |
x_type = 'numeric' if x_col in metadata['numeric_cols'] else 'categorical' | |
y_type = 'numeric' if y_col in metadata['numeric_cols'] else 'categorical' | |
fig = None | |
title = f"{x_col} vs. {y_col}" | |
if x_type == 'numeric' and y_type == 'numeric': | |
fig = px.scatter(df, x=x_col, y=y_col, title=f"Scatter Plot: {title}", trendline="ols", trendline_color_override="red") | |
summary = df[[x_col, y_col]].corr().to_markdown() | |
elif x_type == 'numeric' and y_type == 'categorical': | |
fig = px.box(df, x=x_col, y=y_col, title=f"Box Plot: {title}") | |
summary = df.groupby(y_col)[x_col].describe().to_markdown() | |
elif x_type == 'categorical' and y_type == 'numeric': | |
fig = px.box(df, x=y_col, y=x_col, title=f"Box Plot: {title}") | |
summary = df.groupby(x_col)[y_col].describe().to_markdown() | |
else: # Both categorical | |
crosstab = pd.crosstab(df[x_col], df[y_col]) | |
fig = px.imshow(crosstab, title=f"Heatmap of Counts: {title}", text_auto=True) | |
summary = crosstab.to_markdown() | |
return fig, f"### Analysis Summary\n{summary}" | |
# --- Tab 4: Time Series Analysis --- | |
def generate_time_series_plot(time_col, value_col, resample_freq, state_dict): | |
"""Generates a time series plot with resampling.""" | |
if not time_col or not value_col or not state_dict: | |
return None, "Select Time and Value columns." | |
df = state_dict['df'].copy() | |
try: | |
df[time_col] = pd.to_datetime(df[time_col]) | |
df_resampled = df.set_index(time_col)[value_col].resample(resample_freq).mean().reset_index() | |
fig = px.line(df_resampled, x=time_col, y=value_col, | |
title=f"Time Series of {value_col} (Resampled to '{resample_freq}')") | |
fig.update_layout(xaxis_title="Date", yaxis_title=f"Mean of {value_col}") | |
return fig, f"Showing mean of '{value_col}' aggregated by '{resample_freq}'." | |
except Exception as e: | |
return None, f"Error: {e}" | |
# --- Tab 5: AI Analyst Chat --- | |
def respond_to_chat(user_message, history, state_dict, api_key): | |
"""Handles the chat interaction with the AI Analyst.""" | |
if not api_key: | |
history.append((user_message, "I can't answer without a Gemini API key. Please enter it in the 'AI Overview' tab.")) | |
return history, None, "" | |
if not state_dict: | |
history.append((user_message, "Please upload a dataset before asking questions.")) | |
return history, None, "" | |
history.append((user_message, None)) | |
df_metadata = state_dict['metadata'] | |
# Construct a robust prompt for the AI | |
prompt = f""" | |
You are an AI Data Analyst assistant. Your name is 'Gemini Analyst'. | |
You are given a pandas DataFrame named `df`. | |
Your goal is to answer the user's question about this DataFrame by writing and executing Python code. | |
**Instructions:** | |
1. Analyze the user's question. | |
2. Write Python code to answer it. | |
3. You can use pandas, numpy, and plotly.express. | |
4. If you create a plot, you **MUST** assign it to a variable named `fig`. The plot will be displayed to the user. | |
5. If you are just calculating something or printing text, the `print()` output will be shown. | |
6. **DO NOT** write any code that modifies the DataFrame (e.g., `df.dropna(inplace=True)`). Use `df.copy()` if you need to modify data. | |
7. Respond **ONLY** with a JSON object containing two keys: "thought" and "code". | |
- "thought": A short, one-sentence explanation of your plan. | |
- "code": A string containing the Python code to execute. | |
**DataFrame Metadata:** | |
- **Filename:** {state_dict['filename']} | |
- **Shape:** {df_metadata['shape'][0]} rows, {df_metadata['shape'][1]} columns | |
- **Columns and Data Types:** | |
{df_metadata['dtypes']} | |
--- | |
**User Question:** "{user_message}" | |
--- | |
**Your JSON Response:** | |
""" | |
try: | |
genai.configure(api_key=api_key) | |
model = genai.GenerativeModel('gemini-1.5-flash') | |
response = model.generate_content(prompt) | |
# Clean and parse the JSON response | |
response_text = response.text.strip().replace("```json", "").replace("```", "") | |
response_json = json.loads(response_text) | |
thought = response_json.get("thought", "Thinking...") | |
code_to_run = response_json.get("code", "") | |
bot_message = f"π§ **Thought:** {thought}\n\n" | |
# Execute the code | |
local_vars = {'df': state_dict['df'], 'px': px, 'pd': pd, 'np': np} | |
stdout, fig_result, error = safe_exec(code_to_run, local_vars) | |
if error: | |
bot_message += f"π₯ **Error:**\n```\n{error}\n```" | |
history[-1] = (user_message, bot_message) | |
return history, None, "" | |
if stdout: | |
bot_message += f"π **Output:**\n```\n{stdout}\n```" | |
if not fig_result and not stdout: | |
bot_message += "β Code executed successfully, but it produced no visible output." | |
history[-1] = (user_message, bot_message) | |
return history, fig_result, "" | |
except Exception as e: | |
error_msg = f"An unexpected error occurred: {e}. The AI might have returned an invalid response. Please try rephrasing your question." | |
logging.error(f"Chatbot error: {error_msg}") | |
history[-1] = (user_message, error_msg) | |
return history, None, "" | |
# --- Gradio Interface --- | |
def create_gradio_interface(): | |
"""Builds and returns the full Gradio application interface.""" | |
with gr.Blocks(title="π AI Data Explorer", theme=gr.themes.Soft()) as demo: | |
# Global state to hold data | |
global_state = gr.State({}) | |
# Header | |
gr.Markdown("# π AI Data Explorer: Your Advanced Analytic Tool") | |
gr.Markdown("Upload a CSV, then explore your data with interactive tabs and a powerful AI Analyst.") | |
# --- Top Row: File Upload and API Key --- | |
with gr.Row(): | |
with gr.Column(scale=2): | |
file_input = gr.File(label="π Upload CSV File", file_types=[".csv"]) | |
status_output = gr.Markdown("Status: Waiting for file...") | |
with gr.Column(scale=1): | |
api_key_input = gr.Textbox( | |
label="π Gemini API Key", | |
placeholder="Enter your key here...", | |
type="password", | |
info="Get your free key from Google AI Studio" | |
) | |
# --- Main Tabs --- | |
with gr.Tabs() as tabs: | |
# Tab 1: AI Overview | |
with gr.Tab("π€ AI Overview", id=0): | |
overview_btn = gr.Button("π§ Generate AI Overview", variant="primary") | |
with gr.Row(): | |
story_output = gr.Markdown(label="π AI-Generated Story") | |
with gr.Column(): | |
basic_info_output = gr.Markdown(label="π Basic Information") | |
quality_score = gr.Number(label="π― Data Quality Score (%)", interactive=False) | |
# Tab 2: Univariate Analysis | |
with gr.Tab("π Univariate Analysis", id=1): | |
uni_col_select = gr.Dropdown(label="Select a Column to Analyze", interactive=False) | |
with gr.Row(): | |
uni_plot_output = gr.Plot(label="Distribution Plot") | |
uni_summary_output = gr.Markdown(label="Summary Statistics") | |
# Tab 3: Bivariate Analysis | |
with gr.Tab("π Bivariate Analysis", id=2): | |
with gr.Row(): | |
bi_x_select = gr.Dropdown(label="Select X-Axis Column", interactive=False) | |
bi_y_select = gr.Dropdown(label="Select Y-Axis Column", interactive=False) | |
bi_btn = gr.Button("π¨ Generate Bivariate Plot", variant="secondary") | |
with gr.Row(): | |
bi_plot_output = gr.Plot(label="Relationship Plot") | |
bi_summary_output = gr.Markdown(label="Analysis Summary") | |
# Tab 4: Time Series (conditionally visible) | |
with gr.Tab("β³ Time Series Analysis", id=3, visible=False) as ts_tab: | |
with gr.Row(): | |
ts_time_col = gr.Dropdown(label="Select Time Column", interactive=False) | |
ts_value_col = gr.Dropdown(label="Select Value Column", interactive=False) | |
ts_resample = gr.Radio(['D', 'W', 'M', 'Q', 'Y'], label="Resample Frequency", value='M') | |
ts_btn = gr.Button("π Plot Time Series", variant="secondary") | |
ts_plot_output = gr.Plot(label="Time Series Plot") | |
ts_status_output = gr.Markdown() | |
# Tab 5: AI Analyst Chat (conditionally visible) | |
with gr.Tab("π¬ AI Analyst Chat", id=4, visible=False) as chat_tab: | |
chatbot = gr.Chatbot(label="Chat with Gemini Analyst", height=500) | |
chat_plot_output = gr.Plot(label="AI Generated Plot") | |
with gr.Row(): | |
chat_input = gr.Textbox(label="Your Question", placeholder="e.g., 'Show me the distribution of age'", scale=4) | |
chat_submit_btn = gr.Button("Submit", variant="primary", scale=1) | |
chat_clear_btn = gr.Button("Clear Chat") | |
# --- Event Handlers --- | |
# File upload triggers data loading and UI updates | |
file_input.upload( | |
fn=load_and_process_file, | |
inputs=[file_input, global_state], | |
outputs=[global_state, status_output, uni_col_select, bi_x_select, bi_y_select, ts_value_col, ts_time_col, ts_tab, chat_tab] | |
) | |
# Tab 1: Overview | |
overview_btn.click( | |
fn=analyze_dataset_overview, | |
inputs=[global_state, api_key_input], | |
outputs=[story_output, basic_info_output, quality_score] | |
) | |
# Tab 2: Univariate | |
uni_col_select.change( | |
fn=generate_univariate_plot, | |
inputs=[uni_col_select, global_state], | |
outputs=[uni_plot_output, uni_summary_output] | |
) | |
# Tab 3: Bivariate | |
bi_btn.click( | |
fn=generate_bivariate_plot, | |
inputs=[bi_x_select, bi_y_select, global_state], | |
outputs=[bi_plot_output, bi_summary_output] | |
) | |
# Tab 4: Time Series | |
ts_btn.click( | |
fn=generate_time_series_plot, | |
inputs=[ts_time_col, ts_value_col, ts_resample, global_state], | |
outputs=[ts_plot_output, ts_status_output] | |
) | |
# Tab 5: AI Chat | |
chat_submit_btn.click( | |
fn=respond_to_chat, | |
inputs=[chat_input, chatbot, global_state, api_key_input], | |
outputs=[chatbot, chat_plot_output, chat_input] | |
) | |
chat_input.submit( | |
fn=respond_to_chat, | |
inputs=[chat_input, chatbot, global_state, api_key_input], | |
outputs=[chatbot, chat_plot_output, chat_input] | |
) | |
chat_clear_btn.click(lambda: ([], None, ""), None, [chatbot, chat_plot_output, chat_input]) | |
return demo | |
# --- Main Application Execution --- | |
if __name__ == "__main__": | |
# For local development, you might use load_dotenv() | |
# load_dotenv() | |
app = create_gradio_interface() | |
app.launch(debug=True) |