CognitiveEDA / ui /layout.py
mgbam's picture
Create ui/layout.py
fb92793 verified
raw
history blame
4.99 kB
# ui/layout.py
import gradio as gr
from core.config import settings
def create_main_layout():
"""Defines and returns the entire Gradio UI structure."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"), title=settings.APP_TITLE) as demo:
# State object to hold the DataAnalyzer instance
state_analyzer = gr.State()
# --- Header ---
gr.Markdown(f"<h1>{settings.APP_TITLE}</h1>")
gr.Markdown("A world-class data discovery platform that provides a complete suite of EDA tools and intelligently unlocks specialized analysis modules for Time-Series, Text, and Clustering.")
# --- Input Row ---
with gr.Row():
upload_button = gr.File(label="1. Upload Data File (CSV, Excel)", file_types=[".csv", ".xlsx"], scale=3)
analyze_button = gr.Button("✨ Generate Intelligence Report", variant="primary", scale=1)
# --- Main Tabs ---
with gr.Tabs():
# Tab 1: AI Narrative
with gr.Tab("πŸ€– AI-Powered Strategy Report", id="tab_ai"):
ai_report_output = gr.Markdown("### Your AI-generated report will appear here after analysis...")
# Tab 2: Data Profile
with gr.Tab("πŸ“‹ Data Profile", id="tab_profile"):
with gr.Accordion("Missing Values Report", open=False):
profile_missing_df = gr.DataFrame()
with gr.Accordion("Numeric Features Summary", open=True):
profile_numeric_df = gr.DataFrame()
with gr.Accordion("Categorical Features Summary", open=True):
profile_categorical_df = gr.DataFrame()
# Tab 3: Overview Visuals
with gr.Tab("πŸ“Š Overview Visuals", id="tab_overview"):
with gr.Row():
plot_types = gr.Plot()
plot_missing = gr.Plot()
plot_correlation = gr.Plot()
# Tab 4: Interactive Explorer
with gr.Tab("🎨 Interactive Explorer", id="tab_explorer"):
gr.Markdown("### Univariate Analysis")
with gr.Row():
dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True)
plot_histogram = gr.Plot()
gr.Markdown("### Bivariate Analysis")
with gr.Row():
with gr.Column(scale=1):
dd_scatter_x = gr.Dropdown(label="X-Axis (Numeric)", interactive=True)
dd_scatter_y = gr.Dropdown(label="Y-Axis (Numeric)", interactive=True)
dd_scatter_color = gr.Dropdown(label="Color By (Optional)", interactive=True)
with gr.Column(scale=2):
plot_scatter = gr.Plot()
# Tab 5: Time-Series Analysis (Conditional)
with gr.Tab("βŒ› Time-Series Analysis", id="tab_timeseries", visible=False) as tab_timeseries:
# ... layout for time series ...
pass # Placeholder for brevity
# Tab 6: Text Analysis (Conditional)
with gr.Tab("πŸ“ Text Analysis", id="tab_text", visible=False) as tab_text:
# ... layout for text ...
pass # Placeholder for brevity
# Tab 7: Clustering Analysis (Conditional)
with gr.Tab("🧩 Clustering (K-Means)", id="tab_cluster", visible=False) as tab_cluster:
with gr.Row():
with gr.Column(scale=1):
num_clusters = gr.Slider(minimum=2, maximum=10, value=3, step=1, label="Number of Clusters (K)", interactive=True)
md_cluster_summary = gr.Markdown()
with gr.Column(scale=2):
plot_cluster = gr.Plot()
plot_elbow = gr.Plot()
# Collect all components that need to be updated
# This is a bit verbose but necessary for Gradio's output mapping
components = {
"state_analyzer": state_analyzer, "upload_button": upload_button, "analyze_button": analyze_button,
"ai_report_output": ai_report_output, "profile_missing_df": profile_missing_df,
"profile_numeric_df": profile_numeric_df, "profile_categorical_df": profile_categorical_df,
"plot_types": plot_types, "plot_missing": plot_missing, "plot_correlation": plot_correlation,
"dd_hist_col": dd_hist_col, "plot_histogram": plot_histogram, "dd_scatter_x": dd_scatter_x,
"dd_scatter_y": dd_scatter_y, "dd_scatter_color": dd_scatter_color, "plot_scatter": plot_scatter,
"tab_timeseries": tab_timeseries, "tab_text": tab_text, "tab_cluster": tab_cluster,
"num_clusters": num_clusters, "md_cluster_summary": md_cluster_summary,
"plot_cluster": plot_cluster, "plot_elbow": plot_elbow,
}
return demo, components