Spaces:
Sleeping
Sleeping
# analysis_modules.py | |
import base64 | |
import io | |
import logging | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from sklearn.cluster import KMeans | |
from sklearn.decomposition import PCA | |
from sklearn.preprocessing import StandardScaler | |
from statsmodels.tsa.seasonal import seasonal_decompose | |
from statsmodels.tsa.stattools import adfuller | |
from wordcloud import WordCloud | |
# --- Time-Series Module --- | |
def analyze_time_series(df: pd.DataFrame, date_col: str, value_col: str): | |
""" | |
Performs time-series decomposition and stationarity testing with robust error handling. | |
Args: | |
df (pd.DataFrame): The input DataFrame. | |
date_col (str): The name of the column containing datetime information. | |
value_col (str): The name of the numeric column to analyze. | |
Returns: | |
tuple: A Plotly Figure and a Markdown string with analysis. | |
""" | |
if not date_col or not value_col: | |
return go.Figure(), "Please select both a date/time column and a value column to begin analysis." | |
try: | |
logging.info(f"Analyzing time-series for date='{date_col}' and value='{value_col}'") | |
ts_df = df.copy() | |
ts_df[date_col] = pd.to_datetime(ts_df[date_col]) | |
ts_df = ts_df.set_index(date_col).sort_index() | |
ts_data = ts_df[value_col].dropna() | |
# A common period for decomposition is 12 (monthly), require at least 2 full periods. | |
period = 12 | |
if len(ts_data) < 2 * period: | |
msg = f"Not enough data points ({len(ts_data)}) for a reliable time-series decomposition (requires at least {2*period})." | |
logging.warning(msg) | |
return go.Figure().update_layout(title=msg), "" | |
# Decomposition | |
result = seasonal_decompose(ts_data, model='additive', period=period) | |
fig_decomp = px.line( | |
pd.DataFrame({'Trend': result.trend, 'Seasonal': result.seasonal, 'Residual': result.resid}), | |
title=f"<b>Time-Series Decomposition of '{value_col}'</b>", | |
labels={'value': 'Value', 'index': 'Date'}, template="plotly_white" | |
).update_layout(legend_title_text='Components') | |
# Stationarity Test (ADF) | |
adf_result = adfuller(ts_data) | |
conclusion = 'likely **stationary** (p < 0.05)' if adf_result[1] < 0.05 else 'likely **non-stationary** (p >= 0.05)' | |
adf_md = f""" | |
### Stationarity Analysis (Augmented Dickey-Fuller Test) | |
- **ADF Statistic:** `{adf_result[0]:.4f}` | |
- **p-value:** `{adf_result[1]:.4f}` | |
- **Conclusion:** The time-series is {conclusion}. Non-stationary series often require differencing before being used in forecasting models like ARIMA. | |
""" | |
return fig_decomp, adf_md | |
except Exception as e: | |
logging.error(f"Time-series analysis failed: {e}", exc_info=True) | |
return go.Figure(), f"β **Error:** Could not perform analysis. Please ensure the date column is a valid time format and the value column is numeric. \n`{e}`" | |
# --- Text Analysis Module --- | |
def generate_word_cloud(df: pd.DataFrame, text_col: str): | |
""" | |
Generates a word cloud from a text column and returns it as an HTML object. | |
Args: | |
df (pd.DataFrame): The input DataFrame. | |
text_col (str): The name of the column containing text data. | |
Returns: | |
str: An HTML string containing the word cloud image or an error message. | |
""" | |
if not text_col: | |
return "<p style='text-align:center; padding: 20px;'>Select a text column to generate a word cloud.</p>" | |
try: | |
logging.info(f"Generating word cloud for column '{text_col}'") | |
text = ' '.join(df[text_col].dropna().astype(str)) | |
if not text.strip(): | |
return "<p style='text-align:center; padding: 20px;'>No text data available in this column to generate a cloud.</p>" | |
wordcloud = WordCloud(width=800, height=400, background_color='white', colormap='viridis', max_words=150).generate(text) | |
buf = io.BytesIO() | |
wordcloud.to_image().save(buf, format='png') | |
img_str = base64.b64encode(buf.getvalue()).decode('utf-8') | |
html_content = f'<div style="text-align:center;"><img src="data:image/png;base64,{img_str}" alt="Word Cloud for {text_col}" style="border-radius: 8px;"></div>' | |
return html_content | |
except Exception as e: | |
logging.error(f"Word cloud generation failed: {e}", exc_info=True) | |
return f"<p style='text-align:center; color:red; padding: 20px;'>β **Error:** Could not generate word cloud. Reason: {e}</p>" | |
# --- Clustering Module --- | |
def perform_clustering(df: pd.DataFrame, numeric_cols: list, n_clusters: int = 4): | |
""" | |
Performs K-Means clustering using best practices (scaling and PCA for visualization). | |
Args: | |
df (pd.DataFrame): The input DataFrame. | |
numeric_cols (list): A list of numeric columns to use for clustering. | |
n_clusters (int): The number of clusters (k) to create. | |
Returns: | |
tuple: A Plotly Figure and a Markdown string with analysis. | |
""" | |
if len(numeric_cols) < 2: | |
return go.Figure(), "Clustering requires at least 2 numeric features. Please select a dataset with more numeric columns." | |
try: | |
logging.info(f"Performing K-Means clustering with k={n_clusters} on {len(numeric_cols)} features.") | |
cluster_data = df[numeric_cols].dropna() | |
if len(cluster_data) < n_clusters: | |
return go.Figure(), f"Not enough data points ({len(cluster_data)}) for {n_clusters} clusters." | |
# Step 1: Scale data - Crucial for distance-based algorithms like K-Means | |
scaler = StandardScaler() | |
scaled_data = scaler.fit_transform(cluster_data) | |
# Step 2: Perform K-Means clustering | |
kmeans = KMeans(n_clusters=int(n_clusters), random_state=42, n_init=10).fit(scaled_data) | |
cluster_data['Cluster'] = kmeans.labels_.astype(str) | |
# Step 3: Use PCA to reduce dimensionality for a meaningful 2D visualization | |
pca = PCA(n_components=2) | |
components = pca.fit_transform(scaled_data) | |
cluster_data['PCA1'] = components[:, 0] | |
cluster_data['PCA2'] = components[:, 1] | |
# Step 4: Create the plot using the principal components | |
fig_cluster = px.scatter( | |
cluster_data, x='PCA1', y='PCA2', color='Cluster', | |
title=f"<b>K-Means Clustering Visualization (k={int(n_clusters)})</b>", | |
labels={'PCA1': 'Principal Component 1', 'PCA2': 'Principal Component 2'}, | |
template="plotly_white", color_discrete_sequence=px.colors.qualitative.Vivid | |
) | |
explained_variance = pca.explained_variance_ratio_.sum() * 100 | |
cluster_md = f""" | |
### Clustering Summary & Methodology | |
- **Features Used:** `{len(numeric_cols)}` numeric features were scaled and used for clustering. | |
- **Number of Clusters (K):** `{int(n_clusters)}` | |
- **Visualization:** To visualize the high-dimensional clusters in 2D, Principal Component Analysis (PCA) was used. | |
- **Explained Variance:** The two components shown explain **{explained_variance:.2f}%** of the variance in the data. | |
""" | |
return fig_cluster, cluster_md | |
except Exception as e: | |
logging.error(f"Clustering failed: {e}", exc_info=True) | |
return go.Figure(), f"β **Error:** Could not perform clustering. \n`{e}`" |