Spaces:
Sleeping
Sleeping
# app.py | |
# -*- coding: utf-8 -*- | |
# | |
# PROJECT: CognitiveEDA v5.9 - The QuantumLeap Intelligence Platform | |
# | |
# DESCRIPTION: Main application entry point. This version implements a fully | |
# generic, data-agnostic stratification system, allowing users | |
# to dynamically filter and analyze any high-cardinality feature. | |
# | |
# SETUP: $ pip install -r requirements.txt | |
# | |
# AUTHOR: An MCP & PhD Expert in Data & AI Solutions | |
# VERSION: 5.9 (Generic Stratification Engine) | |
# LAST-UPDATE: 2023-11-01 (Abstracted stratification controls) | |
import warnings | |
import logging | |
import gradio as gr | |
from ui import callbacks | |
from core.config import settings | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s' | |
) | |
warnings.filterwarnings('ignore', category=FutureWarning) | |
def main(): | |
logging.info(f"Starting {settings.APP_TITLE}") | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"), title=settings.APP_TITLE) as demo: | |
# 1. DEFINE THE UI LAYOUT | |
state_analyzer = gr.State() | |
gr.Markdown(f"<h1>{settings.APP_TITLE}</h1>") | |
with gr.Row(): | |
upload_button = gr.File(label="1. Upload Data File", file_types=[".csv", ".xlsx"], scale=3) | |
analyze_button = gr.Button("β¨ Generate Intelligence Report", variant="primary", scale=1) | |
with gr.Tabs(): | |
with gr.Tab("π€ AI-Powered Strategy Report"): | |
ai_report_output = gr.Markdown("### Your AI-generated report will appear here...") | |
with gr.Tab("π Data Profile"): | |
profile_missing_df, profile_numeric_df, profile_categorical_df = gr.DataFrame(), gr.DataFrame(), gr.DataFrame() | |
with gr.Tab("π Overview Visuals"): | |
with gr.Row(): plot_types, plot_missing = gr.Plot(), gr.Plot() | |
plot_correlation = gr.Plot() | |
with gr.Tab("π¨ Interactive Explorer"): | |
with gr.Row(): | |
dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True) | |
plot_histogram = gr.Plot() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
dd_scatter_x = gr.Dropdown(label="X-Axis", interactive=True) | |
dd_scatter_y = gr.Dropdown(label="Y-Axis", interactive=True) | |
dd_scatter_color = gr.Dropdown(label="Color By", interactive=True) | |
with gr.Column(scale=2): | |
plot_scatter = gr.Plot() | |
# --- GENERALIZED CLUSTERING TAB --- | |
with gr.Tab("π§© Clustering (K-Means)", visible=False) as tab_cluster: | |
gr.Markdown("### Stratified Analysis Control Panel") | |
gr.Markdown("Use this to control for a dominant categorical variable. First, select a feature to stratify by (e.g., 'Region', 'Product_Category'), then select a specific value to analyze.") | |
with gr.Row(): | |
dd_stratify_by_col = gr.Dropdown(label="1. Stratify By Feature", interactive=True, scale=2) | |
dd_stratify_by_value = gr.Dropdown(label="2. Filter By Value", interactive=True, scale=2) | |
num_clusters = gr.Slider(minimum=2, maximum=10, value=4, step=1, label="Number of Clusters (K)", interactive=True, scale=1) | |
gr.Markdown("---") | |
gr.Markdown("## Segmentation Visualization & Profile") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
md_cluster_summary = gr.Markdown("Methodology summary will appear here.") | |
md_cluster_personas = gr.Markdown("Detailed cluster personas will appear here...") | |
with gr.Column(scale=2): | |
plot_cluster = gr.Plot(label="PCA Visualization") | |
plot_cluster_profile = gr.Plot(label="Cluster Profile Visualization") | |
gr.Markdown("---") | |
gr.Markdown("## Optimal K Analysis") | |
plot_elbow = gr.Plot(label="The Elbow Method") | |
tab_timeseries, tab_text = gr.Tab("β Time-Series", visible=False), gr.Tab("π Text", visible=False) | |
# 2. DEFINE OUTPUT LISTS | |
main_outputs = [ | |
ai_report_output, profile_missing_df, profile_numeric_df, profile_categorical_df, | |
plot_types, plot_missing, plot_correlation, | |
dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, | |
tab_timeseries, tab_text, tab_cluster, | |
dd_stratify_by_col | |
] | |
# 3. REGISTER EVENT HANDLERS | |
analysis_complete_event = analyze_button.click( | |
fn=callbacks.run_initial_analysis, | |
inputs=[upload_button], | |
outputs=[state_analyzer] | |
) | |
analysis_complete_event.then( | |
fn=callbacks.generate_reports_and_visuals, | |
inputs=[state_analyzer], | |
outputs=main_outputs | |
) | |
dd_hist_col.change(fn=callbacks.create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=[plot_histogram]) | |
scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color] | |
for dropdown in [dd_scatter_x, dd_scatter_y, dd_scatter_color]: | |
dropdown.change(fn=callbacks.create_scatterplot, inputs=scatter_inputs, outputs=[plot_scatter]) | |
# Chained callback for the stratification dropdowns | |
dd_stratify_by_col.change( | |
fn=callbacks.update_filter_dropdown, | |
inputs=[state_analyzer, dd_stratify_by_col], | |
outputs=[dd_stratify_by_value] | |
) | |
# Clustering callback now listens to changes on ALL THREE controls | |
cluster_inputs = [state_analyzer, dd_stratify_by_col, dd_stratify_by_value, num_clusters] | |
cluster_outputs = [plot_cluster, plot_elbow, md_cluster_summary, md_cluster_personas, plot_cluster_profile] | |
for control in [dd_stratify_by_col, dd_stratify_by_value, num_clusters]: | |
control.change( | |
fn=callbacks.update_stratified_clustering, | |
inputs=cluster_inputs, | |
outputs=cluster_outputs | |
) | |
demo.launch(debug=False, server_name="0.0.0.0") | |
if __name__ == "__main__": | |
main() |