CognitiveEDA / ui /callbacks.py
mgbam's picture
Update ui/callbacks.py
57f807e verified
# ui/callbacks.py
# -*- coding: utf-8 -*-
#
# PROJECT: CognitiveEDA v5.9 - The QuantumLeap Intelligence Platform
#
# DESCRIPTION: This module is updated with a generic, data-agnostic
# stratification engine. It dynamically identifies candidate
# features for filtering and updates the UI accordingly.
import gradio as gr
import pandas as pd
import logging
from threading import Thread
import plotly.graph_objects as go
import plotly.express as px
from core.analyzer import DataAnalyzer, engineer_features
from core.llm import GeminiNarrativeGenerator
from core.config import settings
from modules.clustering import perform_clustering
from modules.profiling import profile_clusters
# --- Primary Analysis Chain ---
def run_initial_analysis(file_obj, progress=gr.Progress(track_tqdm=True)):
if file_obj is None: raise gr.Error("No file uploaded.")
progress(0, desc="Validating configuration...")
if not settings.GOOGLE_API_KEY: raise gr.Error("CRITICAL: GOOGLE_API_KEY is not configured.")
try:
progress(0.1, desc="Loading raw data...")
df_raw = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name)
if len(df_raw) > settings.MAX_UI_ROWS:
df_raw = df_raw.sample(n=settings.MAX_UI_ROWS, random_state=42)
progress(0.5, desc="Applying strategic feature engineering...")
df_engineered = engineer_features(df_raw)
progress(0.8, desc="Instantiating analysis engine...")
analyzer = DataAnalyzer(df_engineered)
progress(1.0, desc="Analysis complete. Generating reports...")
return analyzer
except Exception as e:
logging.error(f"Error in initial analysis: {e}", exc_info=True)
raise gr.Error(f"Analysis Failed: {str(e)}")
def generate_reports_and_visuals(analyzer, progress=gr.Progress(track_tqdm=True)):
"""
Phase 2: Now populates the generic 'Stratify By' dropdown with candidate columns.
"""
if not isinstance(analyzer, DataAnalyzer):
yield (None,) * 15
return
progress(0, desc="Spawning AI report thread...")
ai_report_queue = [""]
def generate_ai_report_threaded(a): ai_report_queue[0] = GeminiNarrativeGenerator(settings.GOOGLE_API_KEY).generate_narrative(a)
thread = Thread(target=generate_ai_report_threaded, args=(analyzer,))
thread.start()
progress(0.4, desc="Generating reports and visuals...")
meta = analyzer.metadata
missing_df, num_df, cat_df = analyzer.get_profiling_reports()
fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
# --- Dynamically identify candidate columns for stratification ---
candidate_cols = ["(Do not stratify)"]
if 'categorical_cols' in meta:
for col in meta['categorical_cols']:
# A good candidate has more than 1 but fewer than 50 unique values (heuristic)
if analyzer.df[col].dtype.name != 'object' or (1 < analyzer.df[col].nunique() < 50):
candidate_cols.append(col)
initial_updates = (
gr.update(value="⏳ Generating AI report..."), gr.update(value=missing_df),
gr.update(value=num_df), gr.update(value=cat_df), gr.update(value=fig_types),
gr.update(value=fig_missing), gr.update(value=fig_corr),
gr.update(choices=meta.get('numeric_cols', [])),
gr.update(choices=meta.get('numeric_cols', [])),
gr.update(choices=meta.get('numeric_cols', [])),
gr.update(choices=meta.get('columns', [])), gr.update(visible=bool(meta.get('datetime_cols'))),
gr.update(visible=bool(meta.get('text_cols'))), gr.update(visible=len(meta.get('numeric_cols', [])) > 1),
gr.update(choices=candidate_cols, value="(Do not stratify)") # dd_stratify_by_col
)
yield initial_updates
thread.join()
progress(1.0, desc="AI Report complete!")
final_updates_list = list(initial_updates)
final_updates_list[0] = gr.update(value=ai_report_queue[0])
yield tuple(final_updates_list)
# --- Stratification Callbacks ---
def update_filter_dropdown(analyzer, stratify_col):
"""
When the user selects a feature to stratify by, this function populates
the second dropdown with the unique values of that feature.
"""
if not isinstance(analyzer, DataAnalyzer) or not stratify_col or stratify_col == "(Do not stratify)":
return gr.update(choices=[], value=None, interactive=False)
values = ["(Global Analysis)"] + sorted(analyzer.df[stratify_col].unique().tolist())
return gr.update(choices=values, value="(Global Analysis)", interactive=True)
def update_stratified_clustering(analyzer, stratify_col, filter_value, k):
"""
Orchestrates the full clustering workflow on a dataset that is generically
filtered based on user selections.
"""
if not isinstance(analyzer, DataAnalyzer):
return go.Figure(), go.Figure(), "", "", go.Figure()
logging.info(f"Updating clustering. Stratify by: '{stratify_col}', Filter: '{filter_value}', K={k}")
# Step 1: Stratify the DataFrame based on user selection
analysis_df = analyzer.df
report_title_prefix = "Global Analysis: "
if stratify_col and stratify_col != "(Do not stratify)" and filter_value and filter_value != "(Global Analysis)":
analysis_df = analyzer.df[analyzer.df[stratify_col] == filter_value]
report_title_prefix = f"Analysis for '{stratify_col}' = '{filter_value}': "
if len(analysis_df) < k:
error_msg = f"Not enough data ({len(analysis_df)} rows) to form {k} clusters for the selected filter."
return go.Figure(), go.Figure(), error_msg, error_msg, go.Figure()
# Step 2: Perform Clustering
numeric_cols = [c for c in analyzer.metadata['numeric_cols'] if c in analysis_df.columns]
fig_cluster, fig_elbow, summary, cluster_labels = perform_clustering(
analysis_df, numeric_cols, k
)
if cluster_labels.empty:
return fig_cluster, fig_elbow, summary, "Clustering failed.", go.Figure()
# Step 3: Profile the resulting clusters
cats_to_profile = [c for c in analyzer.metadata['categorical_cols'] if c in analysis_df.columns]
numeric_to_profile = [c for c in numeric_cols if c not in ['Month', 'Day_of_Week', 'Is_Weekend', 'Hour']]
md_personas, fig_profile = profile_clusters(
analysis_df, cluster_labels, numeric_to_profile, cats_to_profile
)
summary = f"**{report_title_prefix}**" + summary
md_personas = f"**{report_title_prefix}**" + md_personas
# Step 4: Return all results
return fig_cluster, fig_elbow, summary, md_personas, fig_profile
# --- Other Callbacks ---
def create_histogram(analyzer, col):
if not isinstance(analyzer, DataAnalyzer) or not col: return go.Figure()
return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box")
def create_scatterplot(analyzer, x_col, y_col, color_col):
if not isinstance(analyzer, DataAnalyzer) or not x_col or not y_col: return go.Figure()
df_sample = analyzer.df.sample(n=min(len(analyzer.df), 10000))
return px.scatter(df_sample, x=x_col, y=y_col, color=color_col if color_col else None)