Spaces:
Sleeping
Sleeping
Create profiling.py
Browse files- modules/profiling.py +98 -0
modules/profiling.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modules/profiling.py
|
2 |
+
|
3 |
+
# -*- coding: utf-8 -*-
|
4 |
+
#
|
5 |
+
# PROJECT: CognitiveEDA v5.7 - The QuantumLeap Intelligence Platform
|
6 |
+
#
|
7 |
+
# DESCRIPTION: A dedicated module for profiling and characterizing customer
|
8 |
+
# segments identified through clustering.
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import plotly.express as px
|
12 |
+
import plotly.graph_objects as go
|
13 |
+
import logging
|
14 |
+
|
15 |
+
def profile_clusters(df: pd.DataFrame, cluster_labels: pd.Series, numeric_cols: list, cat_cols: list) -> tuple:
|
16 |
+
"""
|
17 |
+
Analyzes and profiles clusters to create meaningful business personas.
|
18 |
+
|
19 |
+
This function groups the data by cluster and calculates key statistics
|
20 |
+
for numeric and categorical features to describe each segment. It then
|
21 |
+
visualizes these differences.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
df (pd.DataFrame): The feature-engineered DataFrame.
|
25 |
+
cluster_labels (pd.Series): The series of cluster labels from the K-Means model.
|
26 |
+
numeric_cols (list): List of numeric columns to profile (e.g., ['Total_Revenue']).
|
27 |
+
cat_cols (list): List of categorical columns to profile (e.g., ['City', 'Product']).
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
A tuple containing:
|
31 |
+
- A markdown string with the detailed profile of each cluster.
|
32 |
+
- A Plotly Figure visualizing the differences between clusters.
|
33 |
+
"""
|
34 |
+
# Ensure the dataframe used for profiling has the same index as the labels
|
35 |
+
profile_df = df.loc[cluster_labels.index].copy()
|
36 |
+
profile_df['Cluster'] = cluster_labels
|
37 |
+
|
38 |
+
if profile_df.empty:
|
39 |
+
return "No data available to profile clusters.", go.Figure()
|
40 |
+
|
41 |
+
logging.info(f"Profiling {profile_df['Cluster'].nunique()} clusters...")
|
42 |
+
|
43 |
+
# --- Generate Markdown Report ---
|
44 |
+
report_md = "### Cluster Persona Analysis\n\n"
|
45 |
+
|
46 |
+
# Analyze numeric features by cluster
|
47 |
+
numeric_profile = profile_df.groupby('Cluster')[numeric_cols].mean().round(2)
|
48 |
+
|
49 |
+
# Analyze categorical features by cluster (get the most frequent value - mode)
|
50 |
+
cat_profile_list = []
|
51 |
+
for col in cat_cols:
|
52 |
+
# This lambda is more robust for cases where a mode might not exist
|
53 |
+
mode_series = profile_df.groupby('Cluster')[col].apply(lambda x: x.mode()[0] if not x.mode().empty else "N/A")
|
54 |
+
mode_df = mode_series.to_frame()
|
55 |
+
cat_profile_list.append(mode_df)
|
56 |
+
|
57 |
+
full_profile = pd.concat([numeric_profile] + cat_profile_list, axis=1)
|
58 |
+
|
59 |
+
for cluster_id in sorted(profile_df['Cluster'].unique()):
|
60 |
+
# Try to name the persona by the dominant city, fall back to a generic name
|
61 |
+
try:
|
62 |
+
persona_name = full_profile.loc[cluster_id, 'City']
|
63 |
+
except KeyError:
|
64 |
+
persona_name = f"Segment {cluster_id}"
|
65 |
+
|
66 |
+
report_md += f"#### Cluster {cluster_id}: The '{persona_name}' Persona\n"
|
67 |
+
|
68 |
+
# Numeric Summary
|
69 |
+
for col in numeric_cols:
|
70 |
+
val = full_profile.loc[cluster_id, col]
|
71 |
+
report_md += f"- **Avg. {col.replace('_', ' ')}:** `{val:,.2f}`\n"
|
72 |
+
|
73 |
+
# Categorical Summary
|
74 |
+
for col in cat_cols:
|
75 |
+
val = full_profile.loc[cluster_id, col]
|
76 |
+
report_md += f"- **Dominant {col.replace('_', ' ')}:** `{val}`\n"
|
77 |
+
report_md += "\n"
|
78 |
+
|
79 |
+
# --- Generate Visualization ---
|
80 |
+
# We'll visualize the average 'Total_Revenue' by 'City' for each cluster
|
81 |
+
# This directly tests our hypothesis that 'City' is the dominant feature.
|
82 |
+
try:
|
83 |
+
vis_df = profile_df.groupby(['Cluster', 'City'])['Total_Revenue'].mean().reset_index()
|
84 |
+
|
85 |
+
fig = px.bar(
|
86 |
+
vis_df,
|
87 |
+
x='Cluster',
|
88 |
+
y='Total_Revenue',
|
89 |
+
color='City',
|
90 |
+
barmode='group',
|
91 |
+
title='<b>Cluster Profile: Avg. Total Revenue by Dominant City</b>',
|
92 |
+
labels={'Total_Revenue': 'Average Total Revenue ($)', 'Cluster': 'Customer Segment'}
|
93 |
+
)
|
94 |
+
except Exception as e:
|
95 |
+
logging.error(f"Could not generate profile visualization: {e}")
|
96 |
+
fig = go.Figure().update_layout(title="Could not generate profile visualization.")
|
97 |
+
|
98 |
+
return report_md, fig
|