mgbam commited on
Commit
91f1cc5
Β·
verified Β·
1 Parent(s): 1dae368

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -19
app.py CHANGED
@@ -2,17 +2,16 @@
2
 
3
  # -*- coding: utf-8 -*-
4
  #
5
- # PROJECT: CognitiveEDA v5.5 - The QuantumLeap Intelligence Platform
6
  #
7
- # DESCRIPTION: Main application entry point. This definitive version correctly
8
- # handles multiple outputs by aligning with Gradio's API, passing
9
- # a list of components to the `outputs` parameter.
10
  #
11
  # SETUP: $ pip install -r requirements.txt
12
  #
13
  # AUTHOR: An MCP & PhD Expert in Data & AI Solutions
14
- # VERSION: 5.5 (Final API-Compliant Edition)
15
- # LAST-UPDATE: 2023-10-30 (Corrected multiple output handling)
16
 
17
  import warnings
18
  import logging
@@ -39,6 +38,7 @@ def main():
39
  upload_button = gr.File(label="1. Upload Data File", file_types=[".csv", ".xlsx"], scale=3)
40
  analyze_button = gr.Button("✨ Generate Intelligence Report", variant="primary", scale=1)
41
  with gr.Tabs():
 
42
  with gr.Tab("πŸ€– AI-Powered Strategy Report"):
43
  ai_report_output = gr.Markdown("### Your AI-generated report will appear here...")
44
  with gr.Tab("πŸ“‹ Data Profile"):
@@ -54,27 +54,38 @@ def main():
54
  with gr.Column(scale=1):
55
  dd_scatter_x, dd_scatter_y, dd_scatter_color = gr.Dropdown(label="X-Axis", interactive=True), gr.Dropdown(label="Y-Axis", interactive=True), gr.Dropdown(label="Color By", interactive=True)
56
  with gr.Column(scale=2): plot_scatter = gr.Plot()
 
 
57
  with gr.Tab("🧩 Clustering (K-Means)", visible=False) as tab_cluster:
58
  with gr.Row():
59
  with gr.Column(scale=1):
60
- num_clusters = gr.Slider(minimum=2, maximum=10, value=3, step=1, label="K", interactive=True)
61
- md_cluster_summary = gr.Markdown()
62
- with gr.Column(scale=2): plot_cluster = gr.Plot()
63
- plot_elbow = gr.Plot()
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  tab_timeseries, tab_text = gr.Tab("βŒ› Time-Series", visible=False), gr.Tab("πŸ“ Text", visible=False)
65
 
66
- # 2. DEFINE THE OUTPUTS LIST
67
- # This is the critical change. We create an explicit list of components
68
- # that will be updated by the main analysis function.
69
- # The order here MUST match the order of the returned tuple in the callback.
70
  main_outputs = [
71
  ai_report_output, profile_missing_df, profile_numeric_df, profile_categorical_df,
72
  plot_types, plot_missing, plot_correlation,
73
  dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color,
74
  tab_timeseries, tab_text, tab_cluster
75
  ]
76
-
77
- # 3. REGISTER EVENT HANDLERS
78
  analysis_complete_event = analyze_button.click(
79
  fn=callbacks.run_initial_analysis,
80
  inputs=[upload_button],
@@ -83,15 +94,26 @@ def main():
83
  analysis_complete_event.then(
84
  fn=callbacks.generate_reports_and_visuals,
85
  inputs=[state_analyzer],
86
- outputs=main_outputs # Pass the LIST of components, not a dictionary.
87
  )
88
 
89
- # --- Other Interactive Callbacks ---
90
  dd_hist_col.change(fn=callbacks.create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=[plot_histogram])
91
  scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color]
92
  for dropdown in [dd_scatter_x, dd_scatter_y, dd_scatter_color]:
93
  dropdown.change(fn=callbacks.create_scatterplot, inputs=scatter_inputs, outputs=[plot_scatter])
94
- num_clusters.change(fn=callbacks.update_clustering, inputs=[state_analyzer, num_clusters], outputs=[plot_cluster, plot_elbow, md_cluster_summary])
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  demo.launch(debug=False, server_name="0.0.0.0")
97
 
 
2
 
3
  # -*- coding: utf-8 -*-
4
  #
5
+ # PROJECT: CognitiveEDA v5.7 - The QuantumLeap Intelligence Platform
6
  #
7
+ # DESCRIPTION: Main application entry point. This version adds UI components
8
+ # for cluster profiling to the Clustering tab.
 
9
  #
10
  # SETUP: $ pip install -r requirements.txt
11
  #
12
  # AUTHOR: An MCP & PhD Expert in Data & AI Solutions
13
+ # VERSION: 5.7 (Cluster Profiling Edition)
14
+ # LAST-UPDATE: 2023-10-31 (Integrated cluster persona analysis)
15
 
16
  import warnings
17
  import logging
 
38
  upload_button = gr.File(label="1. Upload Data File", file_types=[".csv", ".xlsx"], scale=3)
39
  analyze_button = gr.Button("✨ Generate Intelligence Report", variant="primary", scale=1)
40
  with gr.Tabs():
41
+ # ... (Other tabs remain the same)
42
  with gr.Tab("πŸ€– AI-Powered Strategy Report"):
43
  ai_report_output = gr.Markdown("### Your AI-generated report will appear here...")
44
  with gr.Tab("πŸ“‹ Data Profile"):
 
54
  with gr.Column(scale=1):
55
  dd_scatter_x, dd_scatter_y, dd_scatter_color = gr.Dropdown(label="X-Axis", interactive=True), gr.Dropdown(label="Y-Axis", interactive=True), gr.Dropdown(label="Color By", interactive=True)
56
  with gr.Column(scale=2): plot_scatter = gr.Plot()
57
+
58
+ # --- MODIFIED CLUSTERING TAB ---
59
  with gr.Tab("🧩 Clustering (K-Means)", visible=False) as tab_cluster:
60
  with gr.Row():
61
  with gr.Column(scale=1):
62
+ num_clusters = gr.Slider(minimum=2, maximum=10, value=5, step=1, label="Number of Clusters (K)", interactive=True)
63
+ md_cluster_summary = gr.Markdown("Methodology summary will appear here.")
64
+ with gr.Column(scale=2):
65
+ plot_cluster = gr.Plot(label="PCA Visualization")
66
+
67
+ gr.Markdown("---")
68
+ gr.Markdown("## Cluster Profile Analysis")
69
+ with gr.Row():
70
+ with gr.Column(scale=1):
71
+ md_cluster_personas = gr.Markdown("Detailed cluster personas will appear here...")
72
+ with gr.Column(scale=2):
73
+ plot_cluster_profile = gr.Plot(label="Cluster Profile Visualization")
74
+
75
+ gr.Markdown("---")
76
+ gr.Markdown("## Optimal K Analysis")
77
+ plot_elbow = gr.Plot(label="The Elbow Method")
78
+
79
  tab_timeseries, tab_text = gr.Tab("βŒ› Time-Series", visible=False), gr.Tab("πŸ“ Text", visible=False)
80
 
 
 
 
 
81
  main_outputs = [
82
  ai_report_output, profile_missing_df, profile_numeric_df, profile_categorical_df,
83
  plot_types, plot_missing, plot_correlation,
84
  dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color,
85
  tab_timeseries, tab_text, tab_cluster
86
  ]
87
+
88
+ # 2. REGISTER EVENT HANDLERS
89
  analysis_complete_event = analyze_button.click(
90
  fn=callbacks.run_initial_analysis,
91
  inputs=[upload_button],
 
94
  analysis_complete_event.then(
95
  fn=callbacks.generate_reports_and_visuals,
96
  inputs=[state_analyzer],
97
+ outputs=main_outputs
98
  )
99
 
 
100
  dd_hist_col.change(fn=callbacks.create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=[plot_histogram])
101
  scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color]
102
  for dropdown in [dd_scatter_x, dd_scatter_y, dd_scatter_color]:
103
  dropdown.change(fn=callbacks.create_scatterplot, inputs=scatter_inputs, outputs=[plot_scatter])
104
+
105
+ # --- MODIFIED CLUSTERING CALLBACK WIRING ---
106
+ num_clusters.change(
107
+ fn=callbacks.update_clustering,
108
+ inputs=[state_analyzer, num_clusters],
109
+ outputs=[
110
+ plot_cluster,
111
+ plot_elbow,
112
+ md_cluster_summary,
113
+ md_cluster_personas,
114
+ plot_cluster_profile
115
+ ]
116
+ )
117
 
118
  demo.launch(debug=False, server_name="0.0.0.0")
119