# ui/callbacks.py # -*- coding: utf-8 -*- # # PROJECT: CognitiveEDA v5.7 - The QuantumLeap Intelligence Platform # # DESCRIPTION: This module contains the core logic for all Gradio event handlers. # The clustering callback is now updated to include persona profiling. import gradio as gr import pandas as pd import logging from threading import Thread import plotly.graph_objects as go import plotly.express as px from core.analyzer import DataAnalyzer, engineer_features from core.llm import GeminiNarrativeGenerator from core.config import settings from core.exceptions import DataProcessingError from modules.clustering import perform_clustering # --- NEW IMPORT --- from modules.profiling import profile_clusters # --- Primary Analysis Chain (Unchanged) --- def run_initial_analysis(file_obj, progress=gr.Progress(track_tqdm=True)): if file_obj is None: raise gr.Error("No file uploaded.") progress(0, desc="Validating configuration...") if not settings.GOOGLE_API_KEY: raise gr.Error("CRITICAL: GOOGLE_API_KEY is not configured.") try: progress(0.1, desc="Loading raw data...") df_raw = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name) if len(df_raw) > settings.MAX_UI_ROWS: df_raw = df_raw.sample(n=settings.MAX_UI_ROWS, random_state=42) progress(0.5, desc="Applying strategic feature engineering...") df_engineered = engineer_features(df_raw) progress(0.8, desc="Instantiating analysis engine...") analyzer = DataAnalyzer(df_engineered) progress(1.0, desc="Analysis complete. Generating reports...") return analyzer except Exception as e: logging.error(f"Error in initial analysis: {e}", exc_info=True) raise gr.Error(f"Analysis Failed: {str(e)}") def generate_reports_and_visuals(analyzer, progress=gr.Progress(track_tqdm=True)): if not isinstance(analyzer, DataAnalyzer): yield (None,) * 14 return progress(0, desc="Spawning AI report thread...") ai_report_queue = [""] def generate_ai_report_threaded(a): narrative_generator = GeminiNarrativeGenerator(settings.GOOGLE_API_KEY) ai_report_queue[0] = narrative_generator.generate_narrative(a) thread = Thread(target=generate_ai_report_threaded, args=(analyzer,)) thread.start() progress(0.4, desc="Generating reports and visuals...") meta = analyzer.metadata missing_df, num_df, cat_df = analyzer.get_profiling_reports() fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals() initial_updates = ( gr.update(value="⏳ Generating AI report..."), gr.update(value=missing_df), gr.update(value=num_df), gr.update(value=cat_df), gr.update(value=fig_types), gr.update(value=fig_missing), gr.update(value=fig_corr), gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None), gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None), gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][1] if len(meta['numeric_cols']) > 1 else None), gr.update(choices=meta['columns']), gr.update(visible=bool(meta['datetime_cols'])), gr.update(visible=bool(meta['text_cols'])), gr.update(visible=len(meta['numeric_cols']) > 1) ) yield initial_updates thread.join() progress(1.0, desc="AI Report complete!") final_updates_list = list(initial_updates) final_updates_list[0] = gr.update(value=ai_report_queue[0]) yield tuple(final_updates_list) # --- Interactive Explorer Callbacks (Unchanged) --- def create_histogram(analyzer, col): if not isinstance(analyzer, DataAnalyzer) or not col: return go.Figure() return px.histogram(analyzer.df, x=col, title=f"Distribution of {col}", marginal="box") def create_scatterplot(analyzer, x_col, y_col, color_col): if not isinstance(analyzer, DataAnalyzer) or not x_col or not y_col: return go.Figure() df_sample = analyzer.df.sample(n=min(len(analyzer.df), 10000)) return px.scatter(df_sample, x=x_col, y=y_col, color=color_col if color_col else None) # --- MODIFIED CLUSTERING CALLBACK --- def update_clustering(analyzer, k): """ Orchestrates the full clustering workflow: 1. Runs K-Means clustering. 2. Receives cluster labels. 3. Calls the profiling module to analyze the segments. 4. Returns all results to the UI. """ if not isinstance(analyzer, DataAnalyzer): # Return empty updates for all 5 clustering output components return go.Figure(), go.Figure(), "", "", go.Figure() # Step 1: Perform Clustering to get visuals and labels fig_cluster, fig_elbow, summary, cluster_labels = perform_clustering( analyzer.df, analyzer.metadata['numeric_cols'], k ) if cluster_labels.empty: # Handle cases where clustering fails (e.g., not enough data) return fig_cluster, fig_elbow, summary, "Clustering failed. No personas to profile.", go.Figure() # Step 2: Profile the resulting clusters numeric_to_profile = ['Total_Revenue', 'Quantity_Ordered', 'Hour'] cats_to_profile = ['City', 'Product', 'Day_of_Week'] # Filter to only use columns that actually exist in the engineered dataframe numeric_to_profile = [c for c in numeric_to_profile if c in analyzer.df.columns] cats_to_profile = [c for c in cats_to_profile if c in analyzer.df.columns] md_personas, fig_profile = profile_clusters( analyzer.df, cluster_labels, numeric_to_profile, cats_to_profile ) # Step 3: Return all 5 results in the correct order for the UI return fig_cluster, fig_elbow, summary, md_personas, fig_profile