# ui/callbacks.py # -*- coding: utf-8 -*- # # PROJECT: CognitiveEDA v5.0 - The QuantumLeap Intelligence Platform # # DESCRIPTION: This module now contains only the CORE LOGIC for the Gradio # event handlers. It exports these functions to be attached to # listeners within the main application context. import gradio as gr import pandas as pd import logging from threading import Thread from core.analyzer import DataAnalyzer from core.llm import GeminiNarrativeGenerator from core.config import settings from core.exceptions import DataProcessingError from modules.clustering import perform_clustering # ... other module imports # --- Main Analysis Logic --- def run_full_analysis(file_obj, progress=gr.Progress(track_tqdm=True)): """ The primary orchestration function. This is the logic that will be called by the 'analyze_button.click' event. """ # 1. Input Validation (File) if file_obj is None: raise gr.Error("No file uploaded. Please upload a CSV or Excel file.") # 2. Runtime Configuration Validation (API Key) progress(0, desc="Validating configuration...") if not settings.GOOGLE_API_KEY: logging.error("Analysis attempted without GOOGLE_API_KEY set.") raise gr.Error( "CRITICAL: GOOGLE_API_KEY is not configured. " "Please add it to your .env file or as a platform secret and restart." ) try: # 3. Data Loading & Core Analysis progress(0.1, desc="Loading and parsing data...") df = pd.read_csv(file_obj.name) if file_obj.name.endswith('.csv') else pd.read_excel(file_obj.name) if len(df) > settings.MAX_UI_ROWS: df = df.sample(n=settings.MAX_UI_ROWS, random_state=42) progress(0.3, desc="Instantiating analysis engine...") analyzer = DataAnalyzer(df) return analyzer # We will return the analyzer and handle the rest in a subsequent step except DataProcessingError as e: logging.error(f"User-facing data processing error: {e}", exc_info=True) raise gr.Error(str(e)) except Exception as e: logging.error(f"A critical unhandled error occurred: {e}", exc_info=True) raise gr.Error(f"Analysis Failed! An unexpected error occurred: {str(e)}") def generate_reports_and_visuals(analyzer, progress=gr.Progress(track_tqdm=True)): """ A generator function that yields UI updates. Triggered after the analyzer is created. """ if not analyzer: # This prevents errors if the initial analysis failed. # Create an empty dictionary that matches the structure of `updates` # so Gradio has something to unpack. return { "state_analyzer": None } # 1. Start AI thread progress(0.1, desc="Spawning AI report thread...") ai_report_queue = [""] def generate_ai_report_threaded(analyzer_instance): narrative_generator = GeminiNarrativeGenerator(api_key=settings.GOOGLE_API_KEY) ai_report_queue[0] = narrative_generator.generate_narrative(analyzer_instance) thread = Thread(target=generate_ai_report_threaded, args=(analyzer,)) thread.start() # 2. Generate standard reports progress(0.4, desc="Generating data profiles...") meta = analyzer.metadata missing_df, num_df, cat_df = analyzer.get_profiling_reports() fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals() # 3. Yield initial updates progress(0.8, desc="Building initial dashboard...") initial_updates = { "ai_report_output": gr.update(value="⏳ Generating AI report... Main dashboard is ready."), "profile_missing_df": gr.update(value=missing_df), "profile_numeric_df": gr.update(value=num_df), "profile_categorical_df": gr.update(value=cat_df), "plot_types": gr.update(value=fig_types), "plot_missing": gr.update(value=fig_missing), "plot_correlation": gr.update(value=fig_corr), "dd_hist_col": gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None), "dd_scatter_x": gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][0] if meta['numeric_cols'] else None), "dd_scatter_y": gr.update(choices=meta['numeric_cols'], value=meta['numeric_cols'][1] if len(meta['numeric_cols']) > 1 else None), "dd_scatter_color": gr.update(choices=meta['columns']), "tab_timeseries": gr.update(visible=bool(meta['datetime_cols'])), "tab_text": gr.update(visible=bool(meta['text_cols'])), "tab_cluster": gr.update(visible=len(meta['numeric_cols']) > 1), } yield initial_updates # 4. Wait for thread and yield final AI report thread.join() progress(1.0, desc="AI Report complete!") final_updates = initial_updates.copy() final_updates["ai_report_output"] = ai_report_queue[0] yield final_updates # --- Other Interactive Callback Logic --- def update_clustering(analyzer, k): if not analyzer: return gr.update(), gr.update(), gr.update() fig_cluster, fig_elbow, summary = perform_clustering(analyzer.df, analyzer.metadata['numeric_cols'], k) return fig_cluster, fig_elbow, summary