# modules/clustering.py # -*- coding: utf-8 -*- # # PROJECT: CognitiveEDA v5.7 - The QuantumLeap Intelligence Platform # # DESCRIPTION: Specialized module for K-Means clustering. This version is # updated to return the cluster labels for downstream profiling. import logging import pandas as pd import plotly.express as px import plotly.graph_objects as go from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler def perform_clustering(df: pd.DataFrame, numeric_cols: list, n_clusters: int): """ Performs K-Means clustering, generates an Elbow plot for optimal K, visualizes the clusters via PCA, and returns the cluster labels. Args: df (pd.DataFrame): The input DataFrame. numeric_cols (list): A list of numeric columns to use for clustering. n_clusters (int): The number of clusters (k) to create. Returns: A tuple containing: - fig_cluster (go.Figure): Plot of the clustered data in 2D PCA space. - fig_elbow (go.Figure): The Elbow Method plot for determining optimal k. - summary (str): A markdown summary of the methodology. - labels (pd.Series): The cluster label assigned to each data point. """ if len(numeric_cols) < 2: empty_fig = go.Figure() return empty_fig, empty_fig, "Clustering requires at least 2 numeric features.", pd.Series() cluster_data = df[numeric_cols].dropna() if len(cluster_data) < n_clusters: empty_fig = go.Figure() return empty_fig, empty_fig, f"Not enough data ({len(cluster_data)}) for {n_clusters} clusters.", pd.Series() scaler = StandardScaler() scaled_data = scaler.fit_transform(cluster_data) # --- Elbow Method Plot --- wcss = [] k_range = range(1, 11) for i in k_range: kmeans_elbow = KMeans(n_clusters=i, init='k-means++', random_state=42, n_init='auto') kmeans_elbow.fit(scaled_data) wcss.append(kmeans_elbow.inertia_) fig_elbow = go.Figure() fig_elbow.add_trace(go.Scatter(x=list(k_range), y=wcss, mode='lines+markers')) fig_elbow.update_layout(title='💡 The Elbow Method for Optimal K', xaxis_title='Number of Clusters (K)', yaxis_title='Within-Cluster Sum of Squares (WCSS)') # --- K-Means Clustering & Visualization --- kmeans = KMeans(n_clusters=n_clusters, init='k-means++', random_state=42, n_init='auto').fit(scaled_data) labels = pd.Series(kmeans.labels_, name='Cluster_Labels', index=cluster_data.index) pca = PCA(n_components=2) components = pca.fit_transform(scaled_data) # Create a DataFrame for plotting plot_df = pd.DataFrame(components, columns=['PCA1', 'PCA2'], index=cluster_data.index) plot_df['Cluster'] = labels.astype(str) fig_cluster = px.scatter( plot_df, x='PCA1', y='PCA2', color='Cluster', title=f"K-Means Clustering Visualization (K={n_clusters})", labels={'PCA1': 'Principal Component 1', 'PCA2': 'Principal Component 2'}, color_discrete_sequence=px.colors.qualitative.Vivid ) explained_variance = pca.explained_variance_ratio_.sum() * 100 summary = (f"**Features Used:** `{len(numeric_cols)}` | **Clusters (K):** `{n_clusters}`\n\n" f"PCA explains **{explained_variance:.2f}%** of variance.") # --- MODIFIED RETURN --- return fig_cluster, fig_elbow, summary, labels