# app.py # -*- coding: utf-8 -*- # # PROJECT: CognitiveEDA v5.5 - The QuantumLeap Intelligence Platform # # DESCRIPTION: Main application entry point. This definitive version correctly # handles multiple outputs by aligning with Gradio's API, passing # a list of components to the `outputs` parameter. # # SETUP: $ pip install -r requirements.txt # # AUTHOR: An MCP & PhD Expert in Data & AI Solutions # VERSION: 5.5 (Final API-Compliant Edition) # LAST-UPDATE: 2023-10-30 (Corrected multiple output handling) import warnings import logging import gradio as gr from ui import callbacks from core.config import settings logging.basicConfig( level=logging.INFO, format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s' ) warnings.filterwarnings('ignore', category=FutureWarning) def main(): logging.info(f"Starting {settings.APP_TITLE}") with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"), title=settings.APP_TITLE) as demo: # 1. DEFINE THE UI LAYOUT state_analyzer = gr.State() gr.Markdown(f"

{settings.APP_TITLE}

") with gr.Row(): upload_button = gr.File(label="1. Upload Data File", file_types=[".csv", ".xlsx"], scale=3) analyze_button = gr.Button("✨ Generate Intelligence Report", variant="primary", scale=1) with gr.Tabs(): with gr.Tab("🤖 AI-Powered Strategy Report"): ai_report_output = gr.Markdown("### Your AI-generated report will appear here...") with gr.Tab("📋 Data Profile"): profile_missing_df, profile_numeric_df, profile_categorical_df = gr.DataFrame(), gr.DataFrame(), gr.DataFrame() with gr.Tab("📊 Overview Visuals"): with gr.Row(): plot_types, plot_missing = gr.Plot(), gr.Plot() plot_correlation = gr.Plot() with gr.Tab("🎨 Interactive Explorer"): with gr.Row(): dd_hist_col = gr.Dropdown(label="Select Column for Histogram", interactive=True) plot_histogram = gr.Plot() with gr.Row(): with gr.Column(scale=1): dd_scatter_x, dd_scatter_y, dd_scatter_color = gr.Dropdown(label="X-Axis", interactive=True), gr.Dropdown(label="Y-Axis", interactive=True), gr.Dropdown(label="Color By", interactive=True) with gr.Column(scale=2): plot_scatter = gr.Plot() with gr.Tab("🧩 Clustering (K-Means)", visible=False) as tab_cluster: with gr.Row(): with gr.Column(scale=1): num_clusters = gr.Slider(minimum=2, maximum=10, value=3, step=1, label="K", interactive=True) md_cluster_summary = gr.Markdown() with gr.Column(scale=2): plot_cluster = gr.Plot() plot_elbow = gr.Plot() tab_timeseries, tab_text = gr.Tab("⌛ Time-Series", visible=False), gr.Tab("📝 Text", visible=False) # 2. DEFINE THE OUTPUTS LIST # This is the critical change. We create an explicit list of components # that will be updated by the main analysis function. # The order here MUST match the order of the returned tuple in the callback. main_outputs = [ ai_report_output, profile_missing_df, profile_numeric_df, profile_categorical_df, plot_types, plot_missing, plot_correlation, dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, tab_timeseries, tab_text, tab_cluster ] # 3. REGISTER EVENT HANDLERS analysis_complete_event = analyze_button.click( fn=callbacks.run_initial_analysis, inputs=[upload_button], outputs=[state_analyzer] ) analysis_complete_event.then( fn=callbacks.generate_reports_and_visuals, inputs=[state_analyzer], outputs=main_outputs # Pass the LIST of components, not a dictionary. ) # --- Other Interactive Callbacks --- dd_hist_col.change(fn=callbacks.create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=[plot_histogram]) scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color] for dropdown in [dd_scatter_x, dd_scatter_y, dd_scatter_color]: dropdown.change(fn=callbacks.create_scatterplot, inputs=scatter_inputs, outputs=[plot_scatter]) num_clusters.change(fn=callbacks.update_clustering, inputs=[state_analyzer, num_clusters], outputs=[plot_cluster, plot_elbow, md_cluster_summary]) demo.launch(debug=False, server_name="0.0.0.0") if __name__ == "__main__": main()