Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import json
|
3 |
import csv
|
4 |
import asyncio
|
@@ -24,7 +25,6 @@ import altair as alt
|
|
24 |
import spacy
|
25 |
import spacy.cli
|
26 |
import PyPDF2
|
27 |
-
import io # For handling in-memory files (Excel, etc.)
|
28 |
|
29 |
# Ensure spaCy model is downloaded
|
30 |
try:
|
@@ -53,7 +53,7 @@ PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
|
53 |
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
54 |
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
|
55 |
|
56 |
-
# Hugging Face
|
57 |
login(HUGGINGFACE_TOKEN)
|
58 |
|
59 |
# Initialize OpenAI
|
@@ -94,7 +94,10 @@ LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
|
|
94 |
"French to English": ("fr", "en"),
|
95 |
}
|
96 |
|
97 |
-
|
|
|
|
|
|
|
98 |
def safe_json_parse(text: str) -> Union[Dict, None]:
|
99 |
"""Safely parse JSON string into a Python dictionary."""
|
100 |
try:
|
@@ -131,7 +134,10 @@ def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
|
|
131 |
})
|
132 |
return articles
|
133 |
|
134 |
-
|
|
|
|
|
|
|
135 |
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
|
136 |
params = {"query": nct_id, "format": "json"}
|
137 |
async with httpx.AsyncClient() as client_http:
|
@@ -158,7 +164,6 @@ async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
|
|
158 |
logger.error(f"Error fetching articles: {e}")
|
159 |
return {"error": str(e)}
|
160 |
|
161 |
-
### PubMed Integration ###
|
162 |
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
163 |
parsed_params = safe_json_parse(query_params)
|
164 |
if not parsed_params or not isinstance(parsed_params, dict):
|
@@ -194,7 +199,6 @@ async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
|
194 |
logger.error(f"Error fetching PubMed articles: {e}")
|
195 |
return {"error": str(e)}
|
196 |
|
197 |
-
### Crossref Integration ###
|
198 |
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
199 |
parsed_params = safe_json_parse(query_params)
|
200 |
if not parsed_params or not isinstance(parsed_params, dict):
|
@@ -209,7 +213,10 @@ async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
|
209 |
logger.error(f"Error fetching Crossref data: {e}")
|
210 |
return {"error": str(e)}
|
211 |
|
212 |
-
|
|
|
|
|
|
|
213 |
def summarize_text(text: str) -> str:
|
214 |
"""Summarize text using OpenAI."""
|
215 |
if not text.strip():
|
@@ -310,21 +317,19 @@ def perform_named_entity_recognition(text: str) -> str:
|
|
310 |
logger.error(f"NER Error: {e}")
|
311 |
return "Named Entity Recognition failed."
|
312 |
|
313 |
-
|
|
|
|
|
|
|
314 |
def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Optional[alt.Chart]]:
|
315 |
"""
|
316 |
-
|
317 |
-
- Show dataset info (columns, shape, numeric summary).
|
318 |
-
- Generate a correlation heatmap (for numeric columns).
|
319 |
-
- Generate distribution plots (histograms) for numeric columns.
|
320 |
Returns (text_summary, correlation_chart, distribution_chart).
|
321 |
"""
|
322 |
try:
|
323 |
-
# Basic info
|
324 |
columns_info = f"Columns: {list(df.columns)}"
|
325 |
shape_info = f"Shape: {df.shape[0]} rows x {df.shape[1]} columns"
|
326 |
|
327 |
-
# Describe with include="all" to show all columns
|
328 |
with pd.option_context("display.max_colwidth", 200, "display.max_rows", None):
|
329 |
describe_info = df.describe(include="all").to_string()
|
330 |
|
@@ -334,7 +339,6 @@ def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Op
|
|
334 |
f"Summary Statistics:\n{describe_info}\n"
|
335 |
)
|
336 |
|
337 |
-
# Correlation heatmap (if at least 2 numeric columns)
|
338 |
numeric_cols = df.select_dtypes(include="number")
|
339 |
corr_chart = None
|
340 |
if numeric_cols.shape[1] >= 2:
|
@@ -353,7 +357,6 @@ def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Op
|
|
353 |
.properties(width=400, height=400, title="Correlation Heatmap")
|
354 |
)
|
355 |
|
356 |
-
# Distribution plots (histograms) for numeric columns
|
357 |
distribution_chart = None
|
358 |
if numeric_cols.shape[1] >= 1:
|
359 |
df_long = numeric_cols.melt(var_name='Column', value_name='Value')
|
@@ -380,86 +383,66 @@ def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Op
|
|
380 |
logger.error(f"Enhanced EDA Error: {e}")
|
381 |
return f"Enhanced EDA failed: {e}", None, None
|
382 |
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
Reads the content of an uploaded file (txt, csv, xls, xlsx, pdf).
|
387 |
-
Returns the extracted text or CSV-like content for non-Excel files.
|
388 |
-
For Excel, we return a placeholder string; we'll handle it later.
|
389 |
-
"""
|
390 |
-
if uploaded_file is None:
|
391 |
-
return ""
|
392 |
|
393 |
-
|
394 |
-
|
|
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
try:
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
# CSV
|
402 |
-
elif file_ext == ".csv":
|
403 |
-
return uploaded_file.read().decode("utf-8")
|
404 |
-
|
405 |
-
# Excel
|
406 |
-
elif file_ext in [".xls", ".xlsx"]:
|
407 |
-
# Return a placeholder so we know an Excel file was uploaded
|
408 |
-
return "EXCEL_FILE_PLACEHOLDER"
|
409 |
-
|
410 |
-
# PDF
|
411 |
-
elif file_ext == ".pdf":
|
412 |
-
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
413 |
-
text_content = []
|
414 |
-
for page in pdf_reader.pages:
|
415 |
-
text_content.append(page.extract_text())
|
416 |
-
return "\n".join(text_content)
|
417 |
-
|
418 |
-
else:
|
419 |
-
return f"Unsupported file format: {file_ext}"
|
420 |
except Exception as e:
|
421 |
-
|
422 |
-
return f"Error reading file: {e}"
|
423 |
|
424 |
def parse_excel_file(uploaded_file: gr.File) -> pd.DataFrame:
|
425 |
"""
|
426 |
Parse an Excel file into a pandas DataFrame.
|
427 |
-
1)
|
428 |
-
2)
|
429 |
"""
|
430 |
import pandas as pd
|
|
|
431 |
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
return pd.read_excel(
|
436 |
|
437 |
-
#
|
438 |
try:
|
439 |
excel_bytes = uploaded_file.file.read()
|
440 |
return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
|
441 |
except Exception as e:
|
442 |
-
|
443 |
-
raise ValueError(f"Excel parsing error: {e}")
|
444 |
|
445 |
-
def
|
446 |
-
"""
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
raise ValueError(error_msg)
|
461 |
|
462 |
-
### Gradio Interface ###
|
463 |
with gr.Blocks() as demo:
|
464 |
gr.Markdown("# ✨ Advanced Clinical Research Assistant with Enhanced EDA ✨")
|
465 |
gr.Markdown("""
|
@@ -476,6 +459,7 @@ Welcome to the **Enhanced** AI-Powered Clinical Assistant!
|
|
476 |
# Inputs
|
477 |
with gr.Row():
|
478 |
text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or query...")
|
|
|
479 |
file_input = gr.File(
|
480 |
label="Upload File (txt/csv/xls/xlsx/pdf)",
|
481 |
file_types=[".txt", ".csv", ".xls", ".xlsx", ".pdf"]
|
@@ -515,16 +499,17 @@ Welcome to the **Enhanced** AI-Powered Clinical Assistant!
|
|
515 |
|
516 |
# Outputs
|
517 |
output_text = gr.Textbox(label="Output", lines=10)
|
518 |
-
|
519 |
with gr.Row():
|
520 |
output_chart = gr.Plot(label="Visualization 1")
|
521 |
output_chart2 = gr.Plot(label="Visualization 2")
|
522 |
-
|
523 |
output_file = gr.File(label="Generated File")
|
524 |
|
525 |
submit_button = gr.Button("Submit")
|
526 |
|
527 |
-
|
|
|
|
|
|
|
528 |
async def handle_action(
|
529 |
action: str,
|
530 |
text: str,
|
@@ -536,68 +521,85 @@ Welcome to the **Enhanced** AI-Powered Clinical Assistant!
|
|
536 |
export_format: str
|
537 |
) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
|
538 |
|
539 |
-
# 1)
|
540 |
-
|
541 |
|
542 |
-
# 2)
|
543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
|
545 |
-
###
|
546 |
if action == "Summarize":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
return summarize_text(combined_text), None, None, None
|
548 |
|
549 |
elif action == "Predict Outcome":
|
550 |
-
|
551 |
-
if isinstance(predictions, dict):
|
552 |
-
chart = visualize_predictions(predictions)
|
553 |
-
return json.dumps(predictions, indent=2), chart, None, None
|
554 |
-
return predictions, None, None, None
|
555 |
|
556 |
elif action == "Generate Report":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
file_path = generate_report(combined_text, filename=report_filename)
|
558 |
msg = f"Report generated: {file_path}" if file_path else "Report generation failed."
|
559 |
return msg, None, None, file_path
|
560 |
|
561 |
elif action == "Translate":
|
562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
563 |
|
564 |
elif action == "Perform Named Entity Recognition":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
565 |
ner_result = perform_named_entity_recognition(combined_text)
|
566 |
return ner_result, None, None, None
|
567 |
|
568 |
elif action == "Perform Enhanced EDA":
|
569 |
-
|
570 |
-
if not file_up and not combined_text:
|
571 |
-
return "No data provided for EDA.", None, None, None
|
572 |
-
|
573 |
-
# If the user uploaded an Excel file
|
574 |
-
if file_up and file_up.name.lower().endswith((".xls", ".xlsx")):
|
575 |
-
try:
|
576 |
-
df_excel = parse_excel_file(file_up)
|
577 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_excel)
|
578 |
-
return eda_summary, corr_chart, dist_chart, None
|
579 |
-
except Exception as e:
|
580 |
-
return f"Excel EDA failed: {e}", None, None, None
|
581 |
-
|
582 |
-
# If the user uploaded a CSV
|
583 |
-
if file_up and file_up.name.lower().endswith(".csv"):
|
584 |
-
try:
|
585 |
-
df_csv = parse_csv_content(file_content)
|
586 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
|
587 |
-
return eda_summary, corr_chart, dist_chart, None
|
588 |
-
except Exception as e:
|
589 |
-
return f"CSV EDA failed: {e}", None, None, None
|
590 |
-
|
591 |
-
# If no file but possibly CSV text in the text box
|
592 |
-
if not file_up and "," in combined_text:
|
593 |
-
try:
|
594 |
-
df_csv = parse_csv_content(combined_text)
|
595 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
|
596 |
-
return eda_summary, corr_chart, dist_chart, None
|
597 |
-
except Exception as e:
|
598 |
-
return f"CSV EDA failed: {e}", None, None, None
|
599 |
-
|
600 |
-
return "No valid CSV/Excel data found for EDA.", None, None, None
|
601 |
|
602 |
elif action == "Fetch Clinical Studies":
|
603 |
if nct_id:
|
@@ -642,9 +644,69 @@ Welcome to the **Enhanced** AI-Powered Clinical Assistant!
|
|
642 |
)
|
643 |
return formatted, None, None, None
|
644 |
|
645 |
-
# Default fallback
|
646 |
return "Invalid action.", None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
648 |
submit_button.click(
|
649 |
handle_action,
|
650 |
inputs=[
|
@@ -657,8 +719,12 @@ Welcome to the **Enhanced** AI-Powered Clinical Assistant!
|
|
657 |
report_filename_input,
|
658 |
export_format,
|
659 |
],
|
660 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
661 |
)
|
662 |
|
663 |
-
# Launch the Gradio app
|
664 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
1 |
import os
|
2 |
+
import io
|
3 |
import json
|
4 |
import csv
|
5 |
import asyncio
|
|
|
25 |
import spacy
|
26 |
import spacy.cli
|
27 |
import PyPDF2
|
|
|
28 |
|
29 |
# Ensure spaCy model is downloaded
|
30 |
try:
|
|
|
53 |
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
54 |
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
|
55 |
|
56 |
+
# Log in to Hugging Face
|
57 |
login(HUGGINGFACE_TOKEN)
|
58 |
|
59 |
# Initialize OpenAI
|
|
|
94 |
"French to English": ("fr", "en"),
|
95 |
}
|
96 |
|
97 |
+
###################################################
|
98 |
+
# UTILS #
|
99 |
+
###################################################
|
100 |
+
|
101 |
def safe_json_parse(text: str) -> Union[Dict, None]:
|
102 |
"""Safely parse JSON string into a Python dictionary."""
|
103 |
try:
|
|
|
134 |
})
|
135 |
return articles
|
136 |
|
137 |
+
###################################################
|
138 |
+
# ASYNC FETCHES #
|
139 |
+
###################################################
|
140 |
+
|
141 |
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
|
142 |
params = {"query": nct_id, "format": "json"}
|
143 |
async with httpx.AsyncClient() as client_http:
|
|
|
164 |
logger.error(f"Error fetching articles: {e}")
|
165 |
return {"error": str(e)}
|
166 |
|
|
|
167 |
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
168 |
parsed_params = safe_json_parse(query_params)
|
169 |
if not parsed_params or not isinstance(parsed_params, dict):
|
|
|
199 |
logger.error(f"Error fetching PubMed articles: {e}")
|
200 |
return {"error": str(e)}
|
201 |
|
|
|
202 |
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
203 |
parsed_params = safe_json_parse(query_params)
|
204 |
if not parsed_params or not isinstance(parsed_params, dict):
|
|
|
213 |
logger.error(f"Error fetching Crossref data: {e}")
|
214 |
return {"error": str(e)}
|
215 |
|
216 |
+
###################################################
|
217 |
+
# CORE LOGIC #
|
218 |
+
###################################################
|
219 |
+
|
220 |
def summarize_text(text: str) -> str:
|
221 |
"""Summarize text using OpenAI."""
|
222 |
if not text.strip():
|
|
|
317 |
logger.error(f"NER Error: {e}")
|
318 |
return "Named Entity Recognition failed."
|
319 |
|
320 |
+
###################################################
|
321 |
+
# ENHANCED EDA #
|
322 |
+
###################################################
|
323 |
+
|
324 |
def perform_enhanced_eda(df: pd.DataFrame) -> Tuple[str, Optional[alt.Chart], Optional[alt.Chart]]:
|
325 |
"""
|
326 |
+
Show columns, shape, numeric summary, correlation heatmap, and distribution histograms.
|
|
|
|
|
|
|
327 |
Returns (text_summary, correlation_chart, distribution_chart).
|
328 |
"""
|
329 |
try:
|
|
|
330 |
columns_info = f"Columns: {list(df.columns)}"
|
331 |
shape_info = f"Shape: {df.shape[0]} rows x {df.shape[1]} columns"
|
332 |
|
|
|
333 |
with pd.option_context("display.max_colwidth", 200, "display.max_rows", None):
|
334 |
describe_info = df.describe(include="all").to_string()
|
335 |
|
|
|
339 |
f"Summary Statistics:\n{describe_info}\n"
|
340 |
)
|
341 |
|
|
|
342 |
numeric_cols = df.select_dtypes(include="number")
|
343 |
corr_chart = None
|
344 |
if numeric_cols.shape[1] >= 2:
|
|
|
357 |
.properties(width=400, height=400, title="Correlation Heatmap")
|
358 |
)
|
359 |
|
|
|
360 |
distribution_chart = None
|
361 |
if numeric_cols.shape[1] >= 1:
|
362 |
df_long = numeric_cols.melt(var_name='Column', value_name='Value')
|
|
|
383 |
logger.error(f"Enhanced EDA Error: {e}")
|
384 |
return f"Enhanced EDA failed: {e}", None, None
|
385 |
|
386 |
+
###################################################
|
387 |
+
# FILE PARSING #
|
388 |
+
###################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
+
def parse_text_file(uploaded_file: gr.File) -> str:
|
391 |
+
"""Reads a .txt file as UTF-8 text."""
|
392 |
+
return uploaded_file.read().decode("utf-8")
|
393 |
|
394 |
+
def parse_csv_file(uploaded_file: gr.File) -> pd.DataFrame:
|
395 |
+
"""
|
396 |
+
Reads CSV content with possible BOM issues
|
397 |
+
by trying 'utf-8' and 'utf-8-sig'.
|
398 |
+
"""
|
399 |
+
content = uploaded_file.read().decode("utf-8", errors="replace")
|
400 |
+
# We can attempt to parse with multiple encodings if needed:
|
401 |
+
# For simplicity, let's just do a fallback approach:
|
402 |
try:
|
403 |
+
from io import StringIO
|
404 |
+
df = pd.read_csv(StringIO(content))
|
405 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
except Exception as e:
|
407 |
+
raise ValueError(f"CSV parse error: {e}")
|
|
|
408 |
|
409 |
def parse_excel_file(uploaded_file: gr.File) -> pd.DataFrame:
|
410 |
"""
|
411 |
Parse an Excel file into a pandas DataFrame.
|
412 |
+
1) If the path exists, read directly from path.
|
413 |
+
2) Else read from uploaded_file.file (in-memory) in binary mode.
|
414 |
"""
|
415 |
import pandas as pd
|
416 |
+
import os
|
417 |
|
418 |
+
excel_path = uploaded_file.name
|
419 |
+
# Try local path first
|
420 |
+
if os.path.isfile(excel_path):
|
421 |
+
return pd.read_excel(excel_path, engine="openpyxl")
|
422 |
|
423 |
+
# Fall back to reading raw bytes from uploaded_file.file
|
424 |
try:
|
425 |
excel_bytes = uploaded_file.file.read()
|
426 |
return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
|
427 |
except Exception as e:
|
428 |
+
raise ValueError(f"Excel parse error: {e}")
|
|
|
429 |
|
430 |
+
def parse_pdf_file(uploaded_file: gr.File) -> str:
|
431 |
+
"""Reads a PDF file with PyPDF2, extracting text from each page."""
|
432 |
+
try:
|
433 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
434 |
+
text_content = []
|
435 |
+
for page in pdf_reader.pages:
|
436 |
+
text_content.append(page.extract_text())
|
437 |
+
return "\n".join(text_content)
|
438 |
+
except Exception as e:
|
439 |
+
logger.error(f"PDF parse error: {e}")
|
440 |
+
return f"Error reading PDF file: {e}"
|
441 |
+
|
442 |
+
###################################################
|
443 |
+
# GRADIO INTERFACE #
|
444 |
+
###################################################
|
|
|
445 |
|
|
|
446 |
with gr.Blocks() as demo:
|
447 |
gr.Markdown("# ✨ Advanced Clinical Research Assistant with Enhanced EDA ✨")
|
448 |
gr.Markdown("""
|
|
|
459 |
# Inputs
|
460 |
with gr.Row():
|
461 |
text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or query...")
|
462 |
+
# We'll rely on .name and .file for the path and file handle
|
463 |
file_input = gr.File(
|
464 |
label="Upload File (txt/csv/xls/xlsx/pdf)",
|
465 |
file_types=[".txt", ".csv", ".xls", ".xlsx", ".pdf"]
|
|
|
499 |
|
500 |
# Outputs
|
501 |
output_text = gr.Textbox(label="Output", lines=10)
|
|
|
502 |
with gr.Row():
|
503 |
output_chart = gr.Plot(label="Visualization 1")
|
504 |
output_chart2 = gr.Plot(label="Visualization 2")
|
|
|
505 |
output_file = gr.File(label="Generated File")
|
506 |
|
507 |
submit_button = gr.Button("Submit")
|
508 |
|
509 |
+
################################################################
|
510 |
+
# MAIN HANDLER FUNCTION #
|
511 |
+
################################################################
|
512 |
+
|
513 |
async def handle_action(
|
514 |
action: str,
|
515 |
text: str,
|
|
|
521 |
export_format: str
|
522 |
) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
|
523 |
|
524 |
+
# 1) Start with user-provided text
|
525 |
+
combined_text = text.strip()
|
526 |
|
527 |
+
# 2) If user uploaded a file, parse it based on extension
|
528 |
+
if file_up is not None:
|
529 |
+
file_ext = os.path.splitext(file_up.name)[1].lower()
|
530 |
+
|
531 |
+
if file_ext == ".txt":
|
532 |
+
file_text = parse_text_file(file_up)
|
533 |
+
combined_text = (combined_text + "\n" + file_text).strip()
|
534 |
+
|
535 |
+
elif file_ext == ".csv":
|
536 |
+
# If user chose EDA, we'll parse into DataFrame below
|
537 |
+
# If we just want to combine text for Summarize, etc., do so:
|
538 |
+
pass
|
539 |
+
|
540 |
+
elif file_ext in [".xls", ".xlsx"]:
|
541 |
+
# We'll handle Excel parsing in the EDA step if needed
|
542 |
+
pass
|
543 |
+
|
544 |
+
elif file_ext == ".pdf":
|
545 |
+
file_text = parse_pdf_file(file_up)
|
546 |
+
combined_text = (combined_text + "\n" + file_text).strip()
|
547 |
|
548 |
+
### ACTIONS ###
|
549 |
if action == "Summarize":
|
550 |
+
if file_up and file_up.name.endswith(".csv"):
|
551 |
+
# Merge CSV text into combined_text
|
552 |
+
# in case user wants summarization of the CSV's raw text
|
553 |
+
try:
|
554 |
+
df_csv = parse_csv_file(file_up)
|
555 |
+
# Turn CSV into text
|
556 |
+
csv_as_text = df_csv.to_csv(index=False)
|
557 |
+
combined_text = (combined_text + "\n" + csv_as_text).strip()
|
558 |
+
except Exception as e:
|
559 |
+
return f"CSV parse error for Summarize: {e}", None, None, None
|
560 |
+
|
561 |
+
# Summarize the combined text
|
562 |
return summarize_text(combined_text), None, None, None
|
563 |
|
564 |
elif action == "Predict Outcome":
|
565 |
+
return _action_predict_outcome(combined_text, file_up)
|
|
|
|
|
|
|
|
|
566 |
|
567 |
elif action == "Generate Report":
|
568 |
+
# Add CSV content if needed
|
569 |
+
if file_up and file_up.name.endswith(".csv"):
|
570 |
+
try:
|
571 |
+
df_csv = parse_csv_file(file_up)
|
572 |
+
combined_text += "\n" + df_csv.to_csv(index=False)
|
573 |
+
except Exception as e:
|
574 |
+
logger.error(f"Error reading CSV for report: {e}")
|
575 |
file_path = generate_report(combined_text, filename=report_filename)
|
576 |
msg = f"Report generated: {file_path}" if file_path else "Report generation failed."
|
577 |
return msg, None, None, file_path
|
578 |
|
579 |
elif action == "Translate":
|
580 |
+
# Optionally read CSV or PDF text?
|
581 |
+
if file_up and file_up.name.endswith(".csv"):
|
582 |
+
try:
|
583 |
+
df_csv = parse_csv_file(file_up)
|
584 |
+
combined_text += "\n" + df_csv.to_csv(index=False)
|
585 |
+
except Exception as e:
|
586 |
+
return f"CSV parse error for Translate: {e}", None, None, None
|
587 |
+
translated = translate_text(combined_text, translation_opt)
|
588 |
+
return translated, None, None, None
|
589 |
|
590 |
elif action == "Perform Named Entity Recognition":
|
591 |
+
# Merge CSV as text if user wants NER on CSV
|
592 |
+
if file_up and file_up.name.endswith(".csv"):
|
593 |
+
try:
|
594 |
+
df_csv = parse_csv_file(file_up)
|
595 |
+
combined_text += "\n" + df_csv.to_csv(index=False)
|
596 |
+
except Exception as e:
|
597 |
+
return f"CSV parse error for NER: {e}", None, None, None
|
598 |
ner_result = perform_named_entity_recognition(combined_text)
|
599 |
return ner_result, None, None, None
|
600 |
|
601 |
elif action == "Perform Enhanced EDA":
|
602 |
+
return await _action_eda(combined_text, file_up, text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
603 |
|
604 |
elif action == "Fetch Clinical Studies":
|
605 |
if nct_id:
|
|
|
644 |
)
|
645 |
return formatted, None, None, None
|
646 |
|
|
|
647 |
return "Invalid action.", None, None, None
|
648 |
+
|
649 |
+
def _action_predict_outcome(combined_text: str, file_up: gr.File) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
|
650 |
+
# If CSV is uploaded, we can merge it into text or do separate logic
|
651 |
+
if file_up and file_up.name.endswith(".csv"):
|
652 |
+
try:
|
653 |
+
df_csv = parse_csv_file(file_up)
|
654 |
+
# Optionally, merge CSV content into the text to be classified
|
655 |
+
combined_text_local = combined_text + "\n" + df_csv.to_csv(index=False)
|
656 |
+
except Exception as e:
|
657 |
+
return f"CSV parse error for Predict Outcome: {e}", None, None, None
|
658 |
+
else:
|
659 |
+
combined_text_local = combined_text
|
660 |
+
|
661 |
+
predictions = predict_outcome(combined_text_local)
|
662 |
+
if isinstance(predictions, dict):
|
663 |
+
chart = visualize_predictions(predictions)
|
664 |
+
return json.dumps(predictions, indent=2), chart, None, None
|
665 |
+
return predictions, None, None, None
|
666 |
|
667 |
+
async def _action_eda(combined_text: str, file_up: Optional[gr.File], raw_text: str) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
|
668 |
+
"""
|
669 |
+
Perform Enhanced EDA on a CSV or Excel file if uploaded.
|
670 |
+
If .csv is present, parse as CSV; if .xls/.xlsx is present, parse as Excel.
|
671 |
+
"""
|
672 |
+
# Make sure we either have a file or some data in the text
|
673 |
+
if not file_up and not raw_text.strip():
|
674 |
+
return "No data provided for EDA.", None, None, None
|
675 |
+
|
676 |
+
if file_up:
|
677 |
+
file_ext = os.path.splitext(file_up.name)[1].lower()
|
678 |
+
if file_ext == ".csv":
|
679 |
+
try:
|
680 |
+
df_csv = parse_csv_file(file_up)
|
681 |
+
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
|
682 |
+
return eda_summary, corr_chart, dist_chart, None
|
683 |
+
except Exception as e:
|
684 |
+
return f"CSV EDA failed: {e}", None, None, None
|
685 |
+
|
686 |
+
elif file_ext in [".xls", ".xlsx"]:
|
687 |
+
try:
|
688 |
+
df_excel = parse_excel_file(file_up)
|
689 |
+
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_excel)
|
690 |
+
return eda_summary, corr_chart, dist_chart, None
|
691 |
+
except Exception as e:
|
692 |
+
return f"Excel EDA failed: {e}", None, None, None
|
693 |
+
|
694 |
+
else:
|
695 |
+
# EDA not supported for PDF or .txt in this example
|
696 |
+
return "No valid CSV/Excel data found for EDA.", None, None, None
|
697 |
+
else:
|
698 |
+
# If no file, maybe the user pasted CSV into the text box
|
699 |
+
if "," in raw_text:
|
700 |
+
# Attempt to parse text as CSV
|
701 |
+
try:
|
702 |
+
from io import StringIO
|
703 |
+
df_csv = pd.read_csv(StringIO(raw_text))
|
704 |
+
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df_csv)
|
705 |
+
return eda_summary, corr_chart, dist_chart, None
|
706 |
+
except Exception as e:
|
707 |
+
return f"EDA parse error for pasted CSV: {e}", None, None, None
|
708 |
+
return "No valid CSV/Excel data found for EDA.", None, None, None
|
709 |
+
|
710 |
submit_button.click(
|
711 |
handle_action,
|
712 |
inputs=[
|
|
|
719 |
report_filename_input,
|
720 |
export_format,
|
721 |
],
|
722 |
+
outputs=[
|
723 |
+
output_text,
|
724 |
+
output_chart,
|
725 |
+
output_chart2,
|
726 |
+
output_file,
|
727 |
+
],
|
728 |
)
|
729 |
|
|
|
730 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|