Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,9 @@ import spacy
|
|
26 |
import spacy.cli
|
27 |
import PyPDF2
|
28 |
|
29 |
-
#
|
|
|
|
|
30 |
try:
|
31 |
nlp = spacy.load("en_core_web_sm")
|
32 |
except OSError:
|
@@ -34,27 +36,46 @@ except OSError:
|
|
34 |
spacy.cli.download("en_core_web_sm")
|
35 |
nlp = spacy.load("en_core_web_sm")
|
36 |
|
37 |
-
#
|
|
|
|
|
38 |
logger.add("error_logs.log", rotation="1 MB", level="ERROR")
|
39 |
|
40 |
-
#
|
|
|
|
|
41 |
load_dotenv()
|
42 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
43 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
44 |
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
|
45 |
|
46 |
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
|
47 |
logger.error("Missing Hugging Face or OpenAI credentials.")
|
48 |
raise ValueError("Missing credentials for Hugging Face or OpenAI.")
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
login(HUGGINGFACE_TOKEN)
|
|
|
|
|
|
|
|
|
52 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
53 |
|
|
|
|
|
|
|
54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
55 |
logger.info(f"Using device: {device}")
|
56 |
|
57 |
-
#
|
|
|
|
|
58 |
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
|
59 |
try:
|
60 |
model = AutoModelForSequenceClassification.from_pretrained(
|
@@ -67,7 +88,6 @@ except Exception as e:
|
|
67 |
logger.error(f"Model load error: {e}")
|
68 |
raise
|
69 |
|
70 |
-
# Model: Translation
|
71 |
try:
|
72 |
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
|
73 |
translation_model = MarianMTModel.from_pretrained(
|
@@ -85,16 +105,21 @@ LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
|
|
85 |
"French to English": ("fr", "en"),
|
86 |
}
|
87 |
|
88 |
-
#
|
|
|
|
|
89 |
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
90 |
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
91 |
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
|
|
|
|
|
92 |
|
93 |
##########################################################
|
94 |
# HELPER FUNCTIONS #
|
95 |
##########################################################
|
96 |
|
97 |
-
def safe_json_parse(text: str) -> Union[Dict, None]:
|
|
|
98 |
try:
|
99 |
return json.loads(text)
|
100 |
except json.JSONDecodeError as e:
|
@@ -102,7 +127,7 @@ def safe_json_parse(text: str) -> Union[Dict, None]:
|
|
102 |
return None
|
103 |
|
104 |
def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
|
105 |
-
"""Parse PubMed XML
|
106 |
root = ET.fromstring(xml_data)
|
107 |
articles = []
|
108 |
for article in root.findall(".//PubmedArticle"):
|
@@ -134,6 +159,7 @@ def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
|
|
134 |
##########################################################
|
135 |
|
136 |
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
|
|
|
137 |
params = {"query": nct_id, "format": "json"}
|
138 |
async with httpx.AsyncClient() as client_http:
|
139 |
try:
|
@@ -145,6 +171,7 @@ async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
|
|
145 |
return {"error": str(e)}
|
146 |
|
147 |
async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
|
|
|
148 |
parsed_params = safe_json_parse(query_params)
|
149 |
if not parsed_params or not isinstance(parsed_params, dict):
|
150 |
return {"error": "Invalid JSON."}
|
@@ -160,6 +187,7 @@ async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
|
|
160 |
return {"error": str(e)}
|
161 |
|
162 |
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
|
|
163 |
parsed_params = safe_json_parse(query_params)
|
164 |
if not parsed_params or not isinstance(parsed_params, dict):
|
165 |
return {"error": "Invalid JSON for PubMed."}
|
@@ -174,31 +202,34 @@ async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
|
174 |
|
175 |
async with httpx.AsyncClient() as client_http:
|
176 |
try:
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
180 |
id_list = search_data.get("esearchresult", {}).get("idlist", [])
|
181 |
if not id_list:
|
182 |
return {"result": ""}
|
183 |
|
|
|
184 |
fetch_params = {
|
185 |
"db": "pubmed",
|
186 |
"id": ",".join(id_list),
|
187 |
"retmode": "xml",
|
188 |
"email": ENTREZ_EMAIL,
|
189 |
}
|
190 |
-
|
191 |
-
|
192 |
-
return {"result":
|
193 |
except Exception as e:
|
194 |
logger.error(f"Error fetching PubMed articles: {e}")
|
195 |
return {"error": str(e)}
|
196 |
|
197 |
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
|
|
198 |
parsed_params = safe_json_parse(query_params)
|
199 |
if not parsed_params or not isinstance(parsed_params, dict):
|
200 |
return {"error": "Invalid JSON for Crossref."}
|
201 |
-
|
202 |
async with httpx.AsyncClient() as client_http:
|
203 |
try:
|
204 |
response = await client_http.get(CROSSREF_API_URL, params=parsed_params)
|
@@ -209,7 +240,41 @@ async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
|
209 |
return {"error": str(e)}
|
210 |
|
211 |
##########################################################
|
212 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
##########################################################
|
214 |
|
215 |
def summarize_text(text: str) -> str:
|
@@ -307,187 +372,105 @@ def perform_named_entity_recognition(text: str) -> str:
|
|
307 |
return "Named Entity Recognition failed."
|
308 |
|
309 |
##########################################################
|
310 |
-
#
|
311 |
##########################################################
|
312 |
|
313 |
-
def
|
314 |
-
"""
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
corr_melted.columns = ["Feature1", "Feature2", "Correlation"]
|
336 |
-
corr_chart = (
|
337 |
-
alt.Chart(corr_melted)
|
338 |
-
.mark_rect()
|
339 |
-
.encode(
|
340 |
-
x="Feature1:O",
|
341 |
-
y="Feature2:O",
|
342 |
-
color="Correlation:Q",
|
343 |
-
tooltip=["Feature1", "Feature2", "Correlation"]
|
344 |
-
)
|
345 |
-
.properties(width=400, height=400, title="Correlation Heatmap")
|
346 |
-
)
|
347 |
-
|
348 |
-
# Distribution
|
349 |
-
if numeric_cols.shape[1] >= 1:
|
350 |
-
df_long = numeric_cols.melt(var_name='Column', value_name='Value')
|
351 |
-
distribution_chart = (
|
352 |
-
alt.Chart(df_long)
|
353 |
-
.mark_bar()
|
354 |
-
.encode(
|
355 |
-
alt.X("Value:Q", bin=alt.Bin(maxbins=30)),
|
356 |
-
alt.Y('count()'),
|
357 |
-
alt.Facet('Column:N', columns=2),
|
358 |
-
tooltip=["Value"]
|
359 |
-
)
|
360 |
-
.properties(
|
361 |
-
title='Distribution of Numeric Columns',
|
362 |
-
width=300,
|
363 |
-
height=200
|
364 |
-
)
|
365 |
-
.interactive()
|
366 |
-
)
|
367 |
-
|
368 |
-
return summary_text, corr_chart, distribution_chart
|
369 |
-
|
370 |
-
except Exception as e:
|
371 |
-
logger.error(f"Enhanced EDA Error: {e}")
|
372 |
-
return f"Enhanced EDA failed: {e}", None, None
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
def parse_csv_file_to_df(file_up: gr.File) -> pd.DataFrame:
|
379 |
"""
|
380 |
-
Safely parse
|
381 |
-
|
382 |
-
|
383 |
-
3) For each approach, we try multiple encodings:
|
384 |
-
["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"].
|
385 |
"""
|
386 |
path = file_up.name
|
387 |
-
#
|
388 |
if os.path.isfile(path):
|
389 |
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
|
390 |
try:
|
391 |
-
|
392 |
-
return df
|
393 |
except UnicodeDecodeError:
|
394 |
-
logger.warning(f"CSV parse failed with
|
395 |
except Exception as e:
|
396 |
-
logger.warning(f"
|
397 |
-
raise ValueError("Could not parse CSV with
|
398 |
else:
|
399 |
-
# 2) Fallback: read from in-memory
|
400 |
if not hasattr(file_up, "file"):
|
401 |
-
raise ValueError("Gradio file object has no .file attribute
|
402 |
raw_bytes = file_up.file.read()
|
403 |
-
|
404 |
-
# Try multiple encodings on the raw bytes
|
405 |
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
|
406 |
try:
|
407 |
-
|
408 |
from io import StringIO
|
409 |
-
|
410 |
-
return df
|
411 |
except UnicodeDecodeError:
|
412 |
-
logger.warning(f"In-memory CSV parse failed with
|
413 |
except Exception as e:
|
414 |
-
logger.warning(f"
|
415 |
-
raise ValueError("Could not parse CSV with
|
416 |
|
417 |
def parse_excel_file_to_df(file_up: gr.File) -> pd.DataFrame:
|
418 |
-
"""
|
419 |
-
For .xls or .xlsx:
|
420 |
-
1) If file path exists, read from that path.
|
421 |
-
2) Else read from .file in memory.
|
422 |
-
"""
|
423 |
-
import os
|
424 |
excel_path = file_up.name
|
425 |
if os.path.isfile(excel_path):
|
426 |
return pd.read_excel(excel_path, engine="openpyxl")
|
427 |
else:
|
428 |
if not hasattr(file_up, "file"):
|
429 |
-
raise ValueError("Gradio file object has no .file attribute
|
430 |
try:
|
431 |
excel_bytes = file_up.file.read()
|
432 |
return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
|
433 |
except Exception as e:
|
434 |
raise ValueError(f"Excel parse error: {e}")
|
435 |
|
436 |
-
def parse_pdf_file_as_str(file_up: gr.File) -> str:
|
437 |
-
"""
|
438 |
-
For PDFs, read pages with PyPDF2.
|
439 |
-
Similar two-step approach: local path or fallback to memory.
|
440 |
-
"""
|
441 |
-
pdf_path = file_up.name
|
442 |
-
if os.path.isfile(pdf_path):
|
443 |
-
with open(pdf_path, "rb") as f:
|
444 |
-
pdf_reader = PyPDF2.PdfReader(f)
|
445 |
-
text_content = []
|
446 |
-
for page in pdf_reader.pages:
|
447 |
-
text_content.append(page.extract_text() or "")
|
448 |
-
return "\n".join(text_content)
|
449 |
-
else:
|
450 |
-
if not hasattr(file_up, "file"):
|
451 |
-
raise ValueError("Gradio file object has no .file attribute. Cannot parse PDF.")
|
452 |
-
try:
|
453 |
-
pdf_bytes = file_up.file.read()
|
454 |
-
reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes))
|
455 |
-
text_content = []
|
456 |
-
for page in reader.pages:
|
457 |
-
text_content.append(page.extract_text() or "")
|
458 |
-
return "\n".join(text_content)
|
459 |
-
except Exception as e:
|
460 |
-
raise ValueError(f"PDF parse error: {e}")
|
461 |
-
|
462 |
-
def parse_text_file_as_str(file_up: gr.File) -> str:
|
463 |
-
"""
|
464 |
-
For .txt, do the same path or fallback approach,
|
465 |
-
possibly with multiple encodings if needed.
|
466 |
-
"""
|
467 |
-
path = file_up.name
|
468 |
-
if os.path.isfile(path):
|
469 |
-
with open(path, "rb") as f:
|
470 |
-
return f.read().decode("utf-8", errors="replace")
|
471 |
-
else:
|
472 |
-
if not hasattr(file_up, "file"):
|
473 |
-
raise ValueError("Gradio file object has no .file attribute. Cannot parse txt.")
|
474 |
-
raw_bytes = file_up.file.read()
|
475 |
-
return raw_bytes.decode("utf-8", errors="replace")
|
476 |
-
|
477 |
##########################################################
|
478 |
# GRADIO APP SETUP #
|
479 |
##########################################################
|
480 |
|
481 |
with gr.Blocks() as demo:
|
482 |
-
gr.Markdown("# 🩺
|
483 |
gr.Markdown("""
|
484 |
- **Summarize** text (GPT-3.5)
|
485 |
- **Predict** outcomes (fine-tuned model)
|
486 |
- **Translate** (English ↔ French)
|
487 |
- **Named Entity Recognition** (spaCy)
|
488 |
- **Fetch** from PubMed, Crossref, Europe PMC
|
|
|
489 |
- **Generate** PDF reports
|
490 |
-
-
|
491 |
""")
|
492 |
|
493 |
with gr.Row():
|
@@ -504,11 +487,11 @@ with gr.Blocks() as demo:
|
|
504 |
"Generate Report",
|
505 |
"Translate",
|
506 |
"Perform Named Entity Recognition",
|
507 |
-
"Perform Enhanced EDA",
|
508 |
"Fetch Clinical Studies",
|
509 |
"Fetch PubMed Articles (Legacy)",
|
510 |
"Fetch PubMed by Query",
|
511 |
"Fetch Crossref by Query",
|
|
|
512 |
],
|
513 |
label="Select an Action",
|
514 |
)
|
@@ -546,24 +529,23 @@ with gr.Blocks() as demo:
|
|
546 |
|
547 |
combined_text = txt.strip()
|
548 |
|
549 |
-
# If a file
|
550 |
if file_up is not None:
|
551 |
file_ext = os.path.splitext(file_up.name)[1].lower()
|
552 |
try:
|
553 |
if file_ext == ".txt":
|
554 |
-
|
555 |
-
combined_text += "\n" +
|
556 |
elif file_ext == ".pdf":
|
557 |
pdf_text = parse_pdf_file_as_str(file_up)
|
558 |
combined_text += "\n" + pdf_text
|
559 |
-
#
|
560 |
-
# Because sometimes you want the raw DataFrame, not the text.
|
561 |
except Exception as e:
|
562 |
return f"File parse error: {e}", None, None, None
|
563 |
|
564 |
-
#
|
565 |
if action == "Summarize":
|
566 |
-
# If CSV or Excel is uploaded, parse
|
567 |
if file_up:
|
568 |
fx = file_up.name.lower()
|
569 |
if fx.endswith(".csv"):
|
@@ -571,13 +553,13 @@ with gr.Blocks() as demo:
|
|
571 |
df_csv = parse_csv_file_to_df(file_up)
|
572 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
573 |
except Exception as e:
|
574 |
-
return f"CSV parse error
|
575 |
elif fx.endswith((".xls", ".xlsx")):
|
576 |
try:
|
577 |
df_xl = parse_excel_file_to_df(file_up)
|
578 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
579 |
except Exception as e:
|
580 |
-
return f"Excel parse error
|
581 |
|
582 |
summary = summarize_text(combined_text)
|
583 |
return summary, None, None, None
|
@@ -590,13 +572,13 @@ with gr.Blocks() as demo:
|
|
590 |
df_csv = parse_csv_file_to_df(file_up)
|
591 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
592 |
except Exception as e:
|
593 |
-
return f"CSV parse error
|
594 |
elif fx.endswith((".xls", ".xlsx")):
|
595 |
try:
|
596 |
df_xl = parse_excel_file_to_df(file_up)
|
597 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
598 |
except Exception as e:
|
599 |
-
return f"Excel parse error
|
600 |
|
601 |
predictions = predict_outcome(combined_text)
|
602 |
if isinstance(predictions, dict):
|
@@ -605,6 +587,7 @@ with gr.Blocks() as demo:
|
|
605 |
return predictions, None, None, None
|
606 |
|
607 |
elif action == "Generate Report":
|
|
|
608 |
if file_up:
|
609 |
fx = file_up.name.lower()
|
610 |
if fx.endswith(".csv"):
|
@@ -612,13 +595,13 @@ with gr.Blocks() as demo:
|
|
612 |
df_csv = parse_csv_file_to_df(file_up)
|
613 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
614 |
except Exception as e:
|
615 |
-
return f"CSV parse error
|
616 |
elif fx.endswith((".xls", ".xlsx")):
|
617 |
try:
|
618 |
df_xl = parse_excel_file_to_df(file_up)
|
619 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
620 |
except Exception as e:
|
621 |
-
return f"Excel parse error
|
622 |
|
623 |
fp = generate_report(combined_text, report_fn)
|
624 |
msg = f"Report generated: {fp}" if fp else "Report generation failed."
|
@@ -632,13 +615,13 @@ with gr.Blocks() as demo:
|
|
632 |
df_csv = parse_csv_file_to_df(file_up)
|
633 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
634 |
except Exception as e:
|
635 |
-
return f"CSV parse error
|
636 |
elif fx.endswith((".xls", ".xlsx")):
|
637 |
try:
|
638 |
df_xl = parse_excel_file_to_df(file_up)
|
639 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
640 |
except Exception as e:
|
641 |
-
return f"Excel parse error
|
642 |
|
643 |
translated = translate_text(combined_text, translation_opt)
|
644 |
return translated, None, None, None
|
@@ -651,20 +634,17 @@ with gr.Blocks() as demo:
|
|
651 |
df_csv = parse_csv_file_to_df(file_up)
|
652 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
653 |
except Exception as e:
|
654 |
-
return f"CSV parse error
|
655 |
elif fx.endswith((".xls", ".xlsx")):
|
656 |
try:
|
657 |
df_xl = parse_excel_file_to_df(file_up)
|
658 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
659 |
except Exception as e:
|
660 |
-
return f"Excel parse error
|
661 |
|
662 |
ner_result = perform_named_entity_recognition(combined_text)
|
663 |
return ner_result, None, None, None
|
664 |
|
665 |
-
elif action == "Perform Enhanced EDA":
|
666 |
-
return await _action_eda(file_up, txt)
|
667 |
-
|
668 |
elif action == "Fetch Clinical Studies":
|
669 |
if nct_id:
|
670 |
result = await fetch_articles_by_nct_id(nct_id)
|
@@ -708,43 +688,23 @@ with gr.Blocks() as demo:
|
|
708 |
)
|
709 |
return formatted, None, None, None
|
710 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
return "Invalid action.", None, None, None
|
712 |
|
713 |
-
async def _action_eda(file_up: Optional[gr.File], raw_text: str) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
|
714 |
-
"""Perform Enhanced EDA on CSV or Excel. If no file, try parsing raw_text as CSV."""
|
715 |
-
if file_up is None and not raw_text.strip():
|
716 |
-
return "No data provided for EDA.", None, None, None
|
717 |
-
|
718 |
-
if file_up:
|
719 |
-
ext = os.path.splitext(file_up.name)[1].lower()
|
720 |
-
if ext == ".csv":
|
721 |
-
try:
|
722 |
-
df = parse_csv_file_to_df(file_up)
|
723 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df)
|
724 |
-
return eda_summary, corr_chart, dist_chart, None
|
725 |
-
except Exception as e:
|
726 |
-
return f"CSV EDA failed: {e}", None, None, None
|
727 |
-
elif ext in [".xls", ".xlsx"]:
|
728 |
-
try:
|
729 |
-
df = parse_excel_file_to_df(file_up)
|
730 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df)
|
731 |
-
return eda_summary, corr_chart, dist_chart, None
|
732 |
-
except Exception as e:
|
733 |
-
return f"Excel EDA failed: {e}", None, None, None
|
734 |
-
else:
|
735 |
-
return "No valid CSV/Excel data for EDA.", None, None, None
|
736 |
-
else:
|
737 |
-
# If no file, maybe user pasted CSV text
|
738 |
-
if "," in raw_text:
|
739 |
-
from io import StringIO
|
740 |
-
try:
|
741 |
-
df = pd.read_csv(StringIO(raw_text))
|
742 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df)
|
743 |
-
return eda_summary, corr_chart, dist_chart, None
|
744 |
-
except Exception as e:
|
745 |
-
return f"Text-based CSV parse error: {e}", None, None, None
|
746 |
-
return "No valid CSV/Excel data found for EDA.", None, None, None
|
747 |
-
|
748 |
submit_btn.click(
|
749 |
fn=handle_action,
|
750 |
inputs=[action, text_input, file_input, translation_option, query_params_input, nct_id_input, report_filename_input, export_format],
|
|
|
26 |
import spacy.cli
|
27 |
import PyPDF2
|
28 |
|
29 |
+
# =========================
|
30 |
+
# 1) SpaCy Model Download
|
31 |
+
# =========================
|
32 |
try:
|
33 |
nlp = spacy.load("en_core_web_sm")
|
34 |
except OSError:
|
|
|
36 |
spacy.cli.download("en_core_web_sm")
|
37 |
nlp = spacy.load("en_core_web_sm")
|
38 |
|
39 |
+
# =========================
|
40 |
+
# 2) Logging Setup
|
41 |
+
# =========================
|
42 |
logger.add("error_logs.log", rotation="1 MB", level="ERROR")
|
43 |
|
44 |
+
# =========================
|
45 |
+
# 3) Environment Vars
|
46 |
+
# =========================
|
47 |
load_dotenv()
|
48 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
49 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
50 |
+
BIOPORTAL_API_KEY = os.getenv("BIOPORTAL_API_KEY") # <--- NEW for BioPortal
|
51 |
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
|
52 |
|
53 |
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
|
54 |
logger.error("Missing Hugging Face or OpenAI credentials.")
|
55 |
raise ValueError("Missing credentials for Hugging Face or OpenAI.")
|
56 |
|
57 |
+
if not BIOPORTAL_API_KEY:
|
58 |
+
logger.warning("No BioPortal API Key found. BioPortal queries may fail.")
|
59 |
+
|
60 |
+
# =========================
|
61 |
+
# 4) Hugging Face Login
|
62 |
+
# =========================
|
63 |
login(HUGGINGFACE_TOKEN)
|
64 |
+
|
65 |
+
# =========================
|
66 |
+
# 5) OpenAI Client
|
67 |
+
# =========================
|
68 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
69 |
|
70 |
+
# =========================
|
71 |
+
# 6) Device (CPU/GPU)
|
72 |
+
# =========================
|
73 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
logger.info(f"Using device: {device}")
|
75 |
|
76 |
+
# =========================
|
77 |
+
# 7) Models Setup
|
78 |
+
# =========================
|
79 |
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
|
80 |
try:
|
81 |
model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
88 |
logger.error(f"Model load error: {e}")
|
89 |
raise
|
90 |
|
|
|
91 |
try:
|
92 |
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
|
93 |
translation_model = MarianMTModel.from_pretrained(
|
|
|
105 |
"French to English": ("fr", "en"),
|
106 |
}
|
107 |
|
108 |
+
# =========================
|
109 |
+
# 8) API Endpoints
|
110 |
+
# =========================
|
111 |
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
112 |
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
113 |
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
|
114 |
+
BIOPORTAL_API_BASE = "https://data.bioontology.org"
|
115 |
+
CROSSREF_API_URL = "https://api.crossref.org/works"
|
116 |
|
117 |
##########################################################
|
118 |
# HELPER FUNCTIONS #
|
119 |
##########################################################
|
120 |
|
121 |
+
def safe_json_parse(text: str) -> Union[Dict[str, Any], None]:
|
122 |
+
"""Parse JSON string into Python dictionary safely."""
|
123 |
try:
|
124 |
return json.loads(text)
|
125 |
except json.JSONDecodeError as e:
|
|
|
127 |
return None
|
128 |
|
129 |
def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
|
130 |
+
"""Parse PubMed XML into structured articles."""
|
131 |
root = ET.fromstring(xml_data)
|
132 |
articles = []
|
133 |
for article in root.findall(".//PubmedArticle"):
|
|
|
159 |
##########################################################
|
160 |
|
161 |
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
|
162 |
+
"""Europe PMC by NCT ID."""
|
163 |
params = {"query": nct_id, "format": "json"}
|
164 |
async with httpx.AsyncClient() as client_http:
|
165 |
try:
|
|
|
171 |
return {"error": str(e)}
|
172 |
|
173 |
async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
|
174 |
+
"""Europe PMC by JSON query."""
|
175 |
parsed_params = safe_json_parse(query_params)
|
176 |
if not parsed_params or not isinstance(parsed_params, dict):
|
177 |
return {"error": "Invalid JSON."}
|
|
|
187 |
return {"error": str(e)}
|
188 |
|
189 |
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
190 |
+
"""PubMed by JSON query."""
|
191 |
parsed_params = safe_json_parse(query_params)
|
192 |
if not parsed_params or not isinstance(parsed_params, dict):
|
193 |
return {"error": "Invalid JSON for PubMed."}
|
|
|
202 |
|
203 |
async with httpx.AsyncClient() as client_http:
|
204 |
try:
|
205 |
+
# 1) search
|
206 |
+
search_resp = await client_http.get(PUBMED_SEARCH_URL, params=search_params)
|
207 |
+
search_resp.raise_for_status()
|
208 |
+
search_data = search_resp.json()
|
209 |
id_list = search_data.get("esearchresult", {}).get("idlist", [])
|
210 |
if not id_list:
|
211 |
return {"result": ""}
|
212 |
|
213 |
+
# 2) fetch
|
214 |
fetch_params = {
|
215 |
"db": "pubmed",
|
216 |
"id": ",".join(id_list),
|
217 |
"retmode": "xml",
|
218 |
"email": ENTREZ_EMAIL,
|
219 |
}
|
220 |
+
fetch_resp = await client_http.get(PUBMED_FETCH_URL, params=fetch_params)
|
221 |
+
fetch_resp.raise_for_status()
|
222 |
+
return {"result": fetch_resp.text}
|
223 |
except Exception as e:
|
224 |
logger.error(f"Error fetching PubMed articles: {e}")
|
225 |
return {"error": str(e)}
|
226 |
|
227 |
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
228 |
+
"""Crossref by JSON query."""
|
229 |
parsed_params = safe_json_parse(query_params)
|
230 |
if not parsed_params or not isinstance(parsed_params, dict):
|
231 |
return {"error": "Invalid JSON for Crossref."}
|
232 |
+
|
233 |
async with httpx.AsyncClient() as client_http:
|
234 |
try:
|
235 |
response = await client_http.get(CROSSREF_API_URL, params=parsed_params)
|
|
|
240 |
return {"error": str(e)}
|
241 |
|
242 |
##########################################################
|
243 |
+
# BIOPORTAL INTEGRATION #
|
244 |
+
##########################################################
|
245 |
+
|
246 |
+
async def fetch_bioportal_by_query(query_params: str) -> Dict[str, Any]:
|
247 |
+
"""
|
248 |
+
Fetch from BioPortal using JSON query parameters.
|
249 |
+
Expects something like: {"q": "cancer"}
|
250 |
+
See: https://data.bioontology.org/documentation
|
251 |
+
"""
|
252 |
+
if not BIOPORTAL_API_KEY:
|
253 |
+
return {"error": "No BioPortal API Key set. Cannot fetch BioPortal data."}
|
254 |
+
|
255 |
+
parsed_params = safe_json_parse(query_params)
|
256 |
+
if not parsed_params or not isinstance(parsed_params, dict):
|
257 |
+
return {"error": "Invalid JSON for BioPortal."}
|
258 |
+
|
259 |
+
search_term = parsed_params.get("q", "")
|
260 |
+
if not search_term:
|
261 |
+
return {"error": "No 'q' found in JSON. Provide a search term."}
|
262 |
+
|
263 |
+
url = f"{BIOPORTAL_API_BASE}/search"
|
264 |
+
headers = {"Authorization": f"apikey token={BIOPORTAL_API_KEY}"}
|
265 |
+
req_params = {"q": search_term}
|
266 |
+
|
267 |
+
async with httpx.AsyncClient() as client_http:
|
268 |
+
try:
|
269 |
+
resp = await client_http.get(url, params=req_params, headers=headers)
|
270 |
+
resp.raise_for_status()
|
271 |
+
return resp.json()
|
272 |
+
except Exception as e:
|
273 |
+
logger.error(f"Error fetching BioPortal data: {e}")
|
274 |
+
return {"error": str(e)}
|
275 |
+
|
276 |
+
##########################################################
|
277 |
+
# CORE LOGIC #
|
278 |
##########################################################
|
279 |
|
280 |
def summarize_text(text: str) -> str:
|
|
|
372 |
return "Named Entity Recognition failed."
|
373 |
|
374 |
##########################################################
|
375 |
+
# FILE PARSING (TXT, PDF, CSV, EXCEL) #
|
376 |
##########################################################
|
377 |
|
378 |
+
def parse_pdf_file_as_str(file_up: gr.File) -> str:
|
379 |
+
"""Read PDF pages with PyPDF2 (local path or in-memory)."""
|
380 |
+
pdf_path = file_up.name
|
381 |
+
if os.path.isfile(pdf_path):
|
382 |
+
with open(pdf_path, "rb") as f:
|
383 |
+
reader = PyPDF2.PdfReader(f)
|
384 |
+
text_content = []
|
385 |
+
for page in reader.pages:
|
386 |
+
text_content.append(page.extract_text() or "")
|
387 |
+
return "\n".join(text_content)
|
388 |
+
else:
|
389 |
+
if not hasattr(file_up, "file"):
|
390 |
+
raise ValueError("Gradio file object has no .file attribute (PDF).")
|
391 |
+
try:
|
392 |
+
pdf_bytes = file_up.file.read()
|
393 |
+
reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes))
|
394 |
+
text_content = []
|
395 |
+
for page in reader.pages:
|
396 |
+
text_content.append(page.extract_text() or "")
|
397 |
+
return "\n".join(text_content)
|
398 |
+
except Exception as e:
|
399 |
+
raise ValueError(f"PDF parse error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
+
def parse_text_file_as_str(file_up: gr.File) -> str:
|
402 |
+
"""Read .txt as UTF-8 from path or in-memory."""
|
403 |
+
path = file_up.name
|
404 |
+
if os.path.isfile(path):
|
405 |
+
with open(path, "rb") as f:
|
406 |
+
return f.read().decode("utf-8", errors="replace")
|
407 |
+
else:
|
408 |
+
if not hasattr(file_up, "file"):
|
409 |
+
raise ValueError("Gradio file object has no .file attribute (TXT).")
|
410 |
+
raw_bytes = file_up.file.read()
|
411 |
+
return raw_bytes.decode("utf-8", errors="replace")
|
412 |
|
413 |
def parse_csv_file_to_df(file_up: gr.File) -> pd.DataFrame:
|
414 |
"""
|
415 |
+
Safely parse CSV with multiple encodings.
|
416 |
+
1) Local file path or fallback .file
|
417 |
+
2) Encodings: ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]
|
|
|
|
|
418 |
"""
|
419 |
path = file_up.name
|
420 |
+
# local path
|
421 |
if os.path.isfile(path):
|
422 |
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
|
423 |
try:
|
424 |
+
return pd.read_csv(path, encoding=enc)
|
|
|
425 |
except UnicodeDecodeError:
|
426 |
+
logger.warning(f"CSV parse failed with {enc}, trying next...")
|
427 |
except Exception as e:
|
428 |
+
logger.warning(f"Other CSV parse error with {enc}: {e}")
|
429 |
+
raise ValueError("Could not parse CSV from local path with known encodings.")
|
430 |
else:
|
|
|
431 |
if not hasattr(file_up, "file"):
|
432 |
+
raise ValueError("Gradio file object has no .file attribute (CSV).")
|
433 |
raw_bytes = file_up.file.read()
|
|
|
|
|
434 |
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
|
435 |
try:
|
436 |
+
txt_decoded = raw_bytes.decode(enc, errors="replace")
|
437 |
from io import StringIO
|
438 |
+
return pd.read_csv(StringIO(txt_decoded))
|
|
|
439 |
except UnicodeDecodeError:
|
440 |
+
logger.warning(f"In-memory CSV parse failed with {enc}, trying next...")
|
441 |
except Exception as e:
|
442 |
+
logger.warning(f"In-memory CSV parse error with {enc}: {e}")
|
443 |
+
raise ValueError("Could not parse CSV from memory with known encodings.")
|
444 |
|
445 |
def parse_excel_file_to_df(file_up: gr.File) -> pd.DataFrame:
|
446 |
+
"""Read Excel (.xls/.xlsx) from path or in-memory."""
|
|
|
|
|
|
|
|
|
|
|
447 |
excel_path = file_up.name
|
448 |
if os.path.isfile(excel_path):
|
449 |
return pd.read_excel(excel_path, engine="openpyxl")
|
450 |
else:
|
451 |
if not hasattr(file_up, "file"):
|
452 |
+
raise ValueError("Gradio file object has no .file attribute (Excel).")
|
453 |
try:
|
454 |
excel_bytes = file_up.file.read()
|
455 |
return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
|
456 |
except Exception as e:
|
457 |
raise ValueError(f"Excel parse error: {e}")
|
458 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
##########################################################
|
460 |
# GRADIO APP SETUP #
|
461 |
##########################################################
|
462 |
|
463 |
with gr.Blocks() as demo:
|
464 |
+
gr.Markdown("# 🩺 Clinical Research Assistant (No EDA) + BioPortal")
|
465 |
gr.Markdown("""
|
466 |
- **Summarize** text (GPT-3.5)
|
467 |
- **Predict** outcomes (fine-tuned model)
|
468 |
- **Translate** (English ↔ French)
|
469 |
- **Named Entity Recognition** (spaCy)
|
470 |
- **Fetch** from PubMed, Crossref, Europe PMC
|
471 |
+
- **Fetch** from BioPortal (NEW)
|
472 |
- **Generate** PDF reports
|
473 |
+
- (EDA Removed)
|
474 |
""")
|
475 |
|
476 |
with gr.Row():
|
|
|
487 |
"Generate Report",
|
488 |
"Translate",
|
489 |
"Perform Named Entity Recognition",
|
|
|
490 |
"Fetch Clinical Studies",
|
491 |
"Fetch PubMed Articles (Legacy)",
|
492 |
"Fetch PubMed by Query",
|
493 |
"Fetch Crossref by Query",
|
494 |
+
"Fetch BioPortal by Query", # <-- NEW ACTION
|
495 |
],
|
496 |
label="Select an Action",
|
497 |
)
|
|
|
529 |
|
530 |
combined_text = txt.strip()
|
531 |
|
532 |
+
# 1) If user uploaded a file, parse basic text from .txt or .pdf
|
533 |
if file_up is not None:
|
534 |
file_ext = os.path.splitext(file_up.name)[1].lower()
|
535 |
try:
|
536 |
if file_ext == ".txt":
|
537 |
+
text_content = parse_text_file_as_str(file_up)
|
538 |
+
combined_text += "\n" + text_content
|
539 |
elif file_ext == ".pdf":
|
540 |
pdf_text = parse_pdf_file_as_str(file_up)
|
541 |
combined_text += "\n" + pdf_text
|
542 |
+
# CSV/Excel might be parsed in the actions below if needed
|
|
|
543 |
except Exception as e:
|
544 |
return f"File parse error: {e}", None, None, None
|
545 |
|
546 |
+
# 2) Action dispatch
|
547 |
if action == "Summarize":
|
548 |
+
# If CSV or Excel is uploaded, parse DataFrame -> text
|
549 |
if file_up:
|
550 |
fx = file_up.name.lower()
|
551 |
if fx.endswith(".csv"):
|
|
|
553 |
df_csv = parse_csv_file_to_df(file_up)
|
554 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
555 |
except Exception as e:
|
556 |
+
return f"CSV parse error (Summarize): {e}", None, None, None
|
557 |
elif fx.endswith((".xls", ".xlsx")):
|
558 |
try:
|
559 |
df_xl = parse_excel_file_to_df(file_up)
|
560 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
561 |
except Exception as e:
|
562 |
+
return f"Excel parse error (Summarize): {e}", None, None, None
|
563 |
|
564 |
summary = summarize_text(combined_text)
|
565 |
return summary, None, None, None
|
|
|
572 |
df_csv = parse_csv_file_to_df(file_up)
|
573 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
574 |
except Exception as e:
|
575 |
+
return f"CSV parse error (Predict): {e}", None, None, None
|
576 |
elif fx.endswith((".xls", ".xlsx")):
|
577 |
try:
|
578 |
df_xl = parse_excel_file_to_df(file_up)
|
579 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
580 |
except Exception as e:
|
581 |
+
return f"Excel parse error (Predict): {e}", None, None, None
|
582 |
|
583 |
predictions = predict_outcome(combined_text)
|
584 |
if isinstance(predictions, dict):
|
|
|
587 |
return predictions, None, None, None
|
588 |
|
589 |
elif action == "Generate Report":
|
590 |
+
# Merge CSV/Excel if user wants them in the PDF
|
591 |
if file_up:
|
592 |
fx = file_up.name.lower()
|
593 |
if fx.endswith(".csv"):
|
|
|
595 |
df_csv = parse_csv_file_to_df(file_up)
|
596 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
597 |
except Exception as e:
|
598 |
+
return f"CSV parse error (Report): {e}", None, None, None
|
599 |
elif fx.endswith((".xls", ".xlsx")):
|
600 |
try:
|
601 |
df_xl = parse_excel_file_to_df(file_up)
|
602 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
603 |
except Exception as e:
|
604 |
+
return f"Excel parse error (Report): {e}", None, None, None
|
605 |
|
606 |
fp = generate_report(combined_text, report_fn)
|
607 |
msg = f"Report generated: {fp}" if fp else "Report generation failed."
|
|
|
615 |
df_csv = parse_csv_file_to_df(file_up)
|
616 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
617 |
except Exception as e:
|
618 |
+
return f"CSV parse error (Translate): {e}", None, None, None
|
619 |
elif fx.endswith((".xls", ".xlsx")):
|
620 |
try:
|
621 |
df_xl = parse_excel_file_to_df(file_up)
|
622 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
623 |
except Exception as e:
|
624 |
+
return f"Excel parse error (Translate): {e}", None, None, None
|
625 |
|
626 |
translated = translate_text(combined_text, translation_opt)
|
627 |
return translated, None, None, None
|
|
|
634 |
df_csv = parse_csv_file_to_df(file_up)
|
635 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
636 |
except Exception as e:
|
637 |
+
return f"CSV parse error (NER): {e}", None, None, None
|
638 |
elif fx.endswith((".xls", ".xlsx")):
|
639 |
try:
|
640 |
df_xl = parse_excel_file_to_df(file_up)
|
641 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
642 |
except Exception as e:
|
643 |
+
return f"Excel parse error (NER): {e}", None, None, None
|
644 |
|
645 |
ner_result = perform_named_entity_recognition(combined_text)
|
646 |
return ner_result, None, None, None
|
647 |
|
|
|
|
|
|
|
648 |
elif action == "Fetch Clinical Studies":
|
649 |
if nct_id:
|
650 |
result = await fetch_articles_by_nct_id(nct_id)
|
|
|
688 |
)
|
689 |
return formatted, None, None, None
|
690 |
|
691 |
+
elif action == "Fetch BioPortal by Query":
|
692 |
+
bioportal_result = await fetch_bioportal_by_query(query_str)
|
693 |
+
# Typically, the results are in "collection"
|
694 |
+
# See: https://data.bioontology.org/documentation
|
695 |
+
items = bioportal_result.get("collection", [])
|
696 |
+
if not items:
|
697 |
+
return "No BioPortal results found.", None, None, None
|
698 |
+
|
699 |
+
# Format a quick listing
|
700 |
+
formatted = "\n\n".join(
|
701 |
+
f"Label: {item.get('prefLabel')}, ID: {item.get('@id')}"
|
702 |
+
for item in items
|
703 |
+
)
|
704 |
+
return formatted, None, None, None
|
705 |
+
|
706 |
return "Invalid action.", None, None, None
|
707 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
submit_btn.click(
|
709 |
fn=handle_action,
|
710 |
inputs=[action, text_input, file_input, translation_option, query_params_input, nct_id_input, report_filename_input, export_format],
|