import os import io import json import csv import asyncio import xml.etree.ElementTree as ET from typing import Any, Dict, Optional, Tuple, Union, List import httpx import gradio as gr import torch from dotenv import load_dotenv from loguru import logger from huggingface_hub import login from openai import OpenAI from reportlab.pdfgen import canvas from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, MarianMTModel, MarianTokenizer, ) import pandas as pd import altair as alt import spacy import spacy.cli import PyPDF2 ############################################################################### # 1) ENVIRONMENT & LOGGING # ############################################################################### # Ensure spaCy model is downloaded (English Core Web) try: nlp = spacy.load("en_core_web_sm") except OSError: logger.info("Downloading SpaCy 'en_core_web_sm' model...") spacy.cli.download("en_core_web_sm") nlp = spacy.load("en_core_web_sm") # Logging logger.add("error_logs.log", rotation="1 MB", level="ERROR") # Load environment variables load_dotenv() HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") BIOPORTAL_API_KEY = os.getenv("BIOPORTAL_API_KEY") # For BioPortal integration ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL") if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY: logger.error("Missing Hugging Face or OpenAI credentials.") raise ValueError("Missing credentials for Hugging Face or OpenAI.") # Warn if BioPortal key is missing if not BIOPORTAL_API_KEY: logger.warning("BIOPORTAL_API_KEY is not set. BioPortal fetch calls will fail.") # Hugging Face login login(HUGGINGFACE_TOKEN) # OpenAI client = OpenAI(api_key=OPENAI_API_KEY) # Device: CPU or GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info(f"Using device: {device}") ############################################################################### # 2) HUGGING FACE & TRANSLATION MODEL SETUP # ############################################################################### MODEL_NAME = "mgbam/bert-base-finetuned-mgbam" try: model = AutoModelForSequenceClassification.from_pretrained( MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN ).to(device) tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, use_auth_token=HUGGINGFACE_TOKEN ) except Exception as e: logger.error(f"Model load error: {e}") raise try: translation_model_name = "Helsinki-NLP/opus-mt-en-fr" translation_model = MarianMTModel.from_pretrained( translation_model_name, use_auth_token=HUGGINGFACE_TOKEN ).to(device) translation_tokenizer = MarianTokenizer.from_pretrained( translation_model_name, use_auth_token=HUGGINGFACE_TOKEN ) except Exception as e: logger.error(f"Translation model load error: {e}") raise # Language map for translation LANGUAGE_MAP: Dict[str, Tuple[str, str]] = { "English to French": ("en", "fr"), "French to English": ("fr", "en"), } ############################################################################### # 3) API ENDPOINTS & CONSTANTS # ############################################################################### PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi" PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi" EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search" BIOPORTAL_API_BASE = "https://data.bioontology.org" CROSSREF_API_URL = "https://api.crossref.org/works" ############################################################################### # 4) HELPER FUNCTIONS # ############################################################################### def safe_json_parse(text: str) -> Union[Dict[str, Any], None]: """Safely parse JSON.""" try: return json.loads(text) except json.JSONDecodeError as e: logger.error(f"JSON parsing error: {e}") return None def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]: """Parse PubMed XML data into a structured list of articles.""" root = ET.fromstring(xml_data) articles = [] for article in root.findall(".//PubmedArticle"): pmid = article.findtext(".//PMID") title = article.findtext(".//ArticleTitle") abstract = article.findtext(".//AbstractText") journal = article.findtext(".//Journal/Title") pub_date_elem = article.find(".//JournalIssue/PubDate") pub_date = None if pub_date_elem is not None: year = pub_date_elem.findtext("Year") month = pub_date_elem.findtext("Month") day = pub_date_elem.findtext("Day") if year and month and day: pub_date = f"{year}-{month}-{day}" else: pub_date = year articles.append({ "PMID": pmid, "Title": title, "Abstract": abstract, "Journal": journal, "PublicationDate": pub_date, }) return articles def explain_clinical_results(results: str) -> str: """Generate a clinical explanation from raw results.""" try: response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": f"Explain the clinical test results:\n{results}"}], max_tokens=500, temperature=0.7, ) return response.choices[0].message.content.strip() except Exception as e: logger.error(f"Explanation error: {e}") return "Failed to generate explanation." ############################################################################### # 6) CORE FUNCTIONS # ############################################################################### def summarize_text(text: str) -> str: """OpenAI GPT-3.5 summarization.""" if not text.strip(): return "No text provided for summarization." try: response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": f"Summarize this clinical data:\n{text}"}], max_tokens=200, temperature=0.7, ) return response.choices[0].message.content.strip() except Exception as e: logger.error(f"Summarization error: {e}") return "Summarization failed." def generate_report(text: str, filename: str = "clinical_report.pdf") -> Optional[str]: """Generate a professional PDF report from the text.""" try: if not text.strip(): logger.warning("No text provided for the report.") c = canvas.Canvas(filename) c.drawString(100, 750, "Clinical Research Report") lines = text.split("\n") y = 730 for line in lines: if y < 50: c.showPage() y = 750 c.drawString(100, y, line) y -= 15 c.save() logger.info(f"Report generated: {filename}") return filename except Exception as e: logger.error(f"Report generation error: {e}") return None def visualize_predictions(predictions: Dict[str, float]) -> alt.Chart: """Simple Altair bar chart to visualize classification probabilities.""" data = pd.DataFrame(list(predictions.items()), columns=["Label", "Probability"]) chart = ( alt.Chart(data) .mark_bar() .encode( x=alt.X("Label:N", sort=None), y="Probability:Q", tooltip=["Label", "Probability"], ) .properties(title="Prediction Probabilities", width=500, height=300) ) return chart ############################################################################### # 7) BUILDING THE GRADIO APP # ############################################################################### with gr.Blocks() as demo: gr.Markdown("# 🏥 AI-Driven Clinical Assistant") gr.Markdown(""" **Highlights**: - **Summarize** clinical text (OpenAI GPT-3.5) - **Explain** clinical test results and trial outcomes - **Generate** professional PDF reports """) text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter clinical text or test results...") action = gr.Radio( [ "Summarize", "Explain Clinical Results", "Generate Report", ], label="Select an Action", ) output_text = gr.Textbox(label="Output", lines=8) output_file = gr.File(label="Generated File") submit_btn = gr.Button("Submit") async def handle_action( action: str, txt: str, report_fn: str ) -> Tuple[Optional[str], Optional[str]]: """Handle clinical actions based on the user's selection.""" try: combined_text = txt.strip() if action == "Summarize": summary = summarize_text(combined_text) return summary, None elif action == "Explain Clinical Results": explanation = explain_clinical_results(combined_text) return explanation, None elif action == "Generate Report": path = generate_report(combined_text, report_fn) msg = f"Report generated: {path}" if path else "Report generation failed." return msg, path return "Invalid action.", None except Exception as e: logger.error(f"Exception: {e}") return f"Error: {str(e)}", None submit_btn.click( fn=handle_action, inputs=[action, text_input, report_filename_input], outputs=[output_text, output_file], ) # Launch the Gradio interface demo.launch(server_name="0.0.0.0", server_port=7860, share=True)