Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import httpx
|
2 |
-
from fastapi import FastAPI, Request,
|
3 |
-
from fastapi.responses import HTMLResponse
|
4 |
from fastapi.templating import Jinja2Templates
|
5 |
-
from pydantic import BaseModel,
|
6 |
-
from contextlib import asynccontextmanager
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
TARGET_COINS = ["bitcoin", "ethereum", "dogecoin"]
|
12 |
-
TARGET_CURRENCY = "usd"
|
13 |
|
14 |
-
# --- Pydantic
|
15 |
-
# This ensures the API response from CoinGecko matches our expectations.
|
16 |
-
class PriceData(BaseModel):
|
17 |
-
usd: float
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
# --- Application
|
24 |
-
# Using a lifespan event is the modern way to manage resources like HTTP clients.
|
25 |
-
# This client will be created on startup and closed gracefully on shutdown.
|
26 |
-
app_state = {}
|
27 |
|
28 |
@asynccontextmanager
|
29 |
async def lifespan(app: FastAPI):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# --- FastAPI App Initialization ---
|
37 |
-
app = FastAPI(lifespan=lifespan)
|
38 |
-
templates = Jinja2Templates(directory="templates")
|
39 |
|
|
|
|
|
40 |
|
41 |
# --- API Endpoints ---
|
42 |
|
43 |
@app.get("/", response_class=HTMLResponse)
|
44 |
-
async def
|
45 |
-
"""Serves the main
|
46 |
return templates.TemplateResponse("index.html", {"request": request})
|
47 |
|
48 |
@app.get("/api/prices", response_class=HTMLResponse)
|
49 |
-
async def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
"""
|
51 |
-
|
52 |
-
|
53 |
"""
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
# Build the request parameters dynamically
|
58 |
-
params = {
|
59 |
-
"ids": ",".join(TARGET_COINS),
|
60 |
-
"vs_currencies": TARGET_CURRENCY
|
61 |
-
}
|
62 |
-
|
63 |
-
response = await client.get(COINGECKO_API_URL, params=params)
|
64 |
-
response.raise_for_status() # Raise an exception for 4xx/5xx errors
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# For larger fragments, you would use another Jinja2 template.
|
71 |
-
html_fragment = ""
|
72 |
-
for coin, data in prices.items():
|
73 |
-
html_fragment += f"<div><strong>{coin.capitalize()}:</strong> ${data.usd:,.2f}</div>"
|
74 |
-
|
75 |
-
return HTMLResponse(content=html_fragment)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
return HTMLResponse(content=f"<div class='error'>Network error: Could not connect to CoinGecko.</div>", status_code=503)
|
80 |
-
except ValidationError as e:
|
81 |
-
# Handle cases where CoinGecko's API response changes unexpectedly
|
82 |
-
return HTMLResponse(content=f"<div class='error'>Invalid API response from data source.</div>", status_code=502)
|
83 |
-
except Exception as e:
|
84 |
-
# Generic catch-all for other unexpected errors
|
85 |
-
return HTMLResponse(content=f"<div class='error'>An unexpected error occurred.</div>", status_code=500)
|
86 |
-
|
87 |
-
|
88 |
-
@app.get("/api/forecast/{coin_id}")
|
89 |
-
async def get_forecast(coin_id: str):
|
90 |
"""
|
91 |
-
|
92 |
-
|
93 |
-
fetching historical data, and running a prediction.
|
94 |
"""
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
if __name__ == "__main__":
|
109 |
-
# To run: uvicorn main:app --reload --port 7860
|
110 |
import uvicorn
|
111 |
-
|
|
|
|
1 |
+
"""
|
2 |
+
CryptoSentinel AI — High-performance FastAPI application.
|
3 |
+
|
4 |
+
This is the main entry point that orchestrates the entire application.
|
5 |
+
- Integrates the asynchronous PriceFetcher for live market data.
|
6 |
+
- Integrates the asynchronous SentimentAnalyzer for real-time analysis.
|
7 |
+
- Serves the interactive frontend and provides all necessary API endpoints.
|
8 |
+
"""
|
9 |
+
import asyncio
|
10 |
+
import json
|
11 |
+
from contextlib import asynccontextmanager
|
12 |
+
|
13 |
import httpx
|
14 |
+
from fastapi import FastAPI, Request, BackgroundTasks
|
15 |
+
from fastapi.responses import HTMLResponse, StreamingResponse
|
16 |
from fastapi.templating import Jinja2Templates
|
17 |
+
from pydantic import BaseModel, constr
|
|
|
18 |
|
19 |
+
# Import our modular, asynchronous service classes
|
20 |
+
from app.price_fetcher import PriceFetcher
|
21 |
+
from app.sentiment import SentimentAnalyzer
|
|
|
|
|
22 |
|
23 |
+
# --- Pydantic Model for API Input Validation ---
|
|
|
|
|
|
|
24 |
|
25 |
+
class SentimentRequest(BaseModel):
|
26 |
+
"""Ensures the text for sentiment analysis is a non-empty string."""
|
27 |
+
text: constr(strip_whitespace=True, min_length=1)
|
28 |
|
29 |
+
# --- Application Lifespan for Resource Management ---
|
|
|
|
|
|
|
30 |
|
31 |
@asynccontextmanager
|
32 |
async def lifespan(app: FastAPI):
|
33 |
+
"""
|
34 |
+
Manages application startup and shutdown events using the modern
|
35 |
+
lifespan context manager.
|
36 |
+
"""
|
37 |
+
# On startup:
|
38 |
+
async with httpx.AsyncClient() as client:
|
39 |
+
# Instantiate and store our services in the application state.
|
40 |
+
# This makes them accessible in any request handler via `request.app.state`.
|
41 |
+
app.state.price_fetcher = PriceFetcher(client=client, coins=["bitcoin", "ethereum", "dogecoin"])
|
42 |
+
app.state.sentiment_analyzer = SentimentAnalyzer(client=client)
|
43 |
+
app.state.request_counter = 0 # Simple counter for unique SSE event IDs
|
44 |
+
|
45 |
+
# Create a cancellable background task for continuous price updates.
|
46 |
+
price_update_task = asyncio.create_task(
|
47 |
+
run_periodic_updates(app.state.price_fetcher, interval_seconds=10)
|
48 |
+
)
|
49 |
+
|
50 |
+
print("🚀 CryptoSentinel AI started successfully.")
|
51 |
+
yield # The application is now running and ready to accept requests.
|
52 |
+
|
53 |
+
# On shutdown:
|
54 |
+
print("⏳ Shutting down background tasks...")
|
55 |
+
price_update_task.cancel()
|
56 |
+
try:
|
57 |
+
await price_update_task
|
58 |
+
except asyncio.CancelledError:
|
59 |
+
print("Price update task cancelled successfully.")
|
60 |
+
print("✅ Shutdown complete.")
|
61 |
+
|
62 |
+
async def run_periodic_updates(fetcher: PriceFetcher, interval_seconds: int):
|
63 |
+
"""A robust asyncio background task that periodically updates prices."""
|
64 |
+
while True:
|
65 |
+
await fetcher.update_prices_async()
|
66 |
+
await asyncio.sleep(interval_seconds)
|
67 |
|
68 |
# --- FastAPI App Initialization ---
|
|
|
|
|
69 |
|
70 |
+
app = FastAPI(title="CryptoSentinel AI", lifespan=lifespan)
|
71 |
+
templates = Jinja2Templates(directory="app/templates")
|
72 |
|
73 |
# --- API Endpoints ---
|
74 |
|
75 |
@app.get("/", response_class=HTMLResponse)
|
76 |
+
async def serve_dashboard(request: Request):
|
77 |
+
"""Serves the main interactive dashboard from `index.html`."""
|
78 |
return templates.TemplateResponse("index.html", {"request": request})
|
79 |
|
80 |
@app.get("/api/prices", response_class=HTMLResponse)
|
81 |
+
async def get_prices_fragment(request: Request):
|
82 |
+
"""Returns an HTML fragment with the latest cached crypto prices for HTMX."""
|
83 |
+
price_fetcher: PriceFetcher = request.app.state.price_fetcher
|
84 |
+
prices = price_fetcher.get_current_prices()
|
85 |
+
|
86 |
+
html_fragment = ""
|
87 |
+
for coin, price in prices.items():
|
88 |
+
# Format the price nicely, handling the initial '--' state
|
89 |
+
price_str = f"${price:,.2f}" if isinstance(price, (int, float)) else price
|
90 |
+
html_fragment += f"<div><strong>{coin.capitalize()}:</strong> {price_str}</div>"
|
91 |
+
|
92 |
+
return HTMLResponse(content=html_fragment)
|
93 |
+
|
94 |
+
@app.post("/api/sentiment")
|
95 |
+
async def analyze_sentiment(
|
96 |
+
payload: SentimentRequest,
|
97 |
+
request: Request,
|
98 |
+
background_tasks: BackgroundTasks
|
99 |
+
):
|
100 |
"""
|
101 |
+
Validates and queues a text for sentiment analysis. The heavy lifting is
|
102 |
+
done in the background to ensure the API responds instantly.
|
103 |
"""
|
104 |
+
analyzer: SentimentAnalyzer = request.app.state.sentiment_analyzer
|
105 |
+
request.app.state.request_counter += 1
|
106 |
+
request_id = request.app.state.request_counter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
# The actual API call to Hugging Face will run after this response is sent.
|
109 |
+
background_tasks.add_task(analyzer.compute_and_publish, payload.text, request_id)
|
110 |
+
|
111 |
+
return HTMLResponse(content="<small>Queued for analysis...</small>")
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
@app.get("/api/sentiment/stream")
|
114 |
+
async def sentiment_stream(request: Request):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
"""
|
116 |
+
Establishes a Server-Sent Events (SSE) connection. It efficiently pushes
|
117 |
+
new sentiment results as HTML fragments to the client as they become available.
|
|
|
118 |
"""
|
119 |
+
analyzer: SentimentAnalyzer = request.app.state.sentiment_analyzer
|
120 |
+
|
121 |
+
async def event_generator():
|
122 |
+
# Clear the initial "waiting..." message on the client.
|
123 |
+
# hx-swap-oob="innerHTML" swaps this div out-of-band without affecting the target.
|
124 |
+
yield f"event: sentiment_update\ndata: <div id='sentiment-results' hx-swap-oob='innerHTML'></div>\n\n"
|
125 |
|
126 |
+
# Listen for new results from the analyzer's internal queue.
|
127 |
+
async for result_payload in analyzer.stream_results():
|
128 |
+
try:
|
129 |
+
result = result_payload['result']
|
130 |
+
label = str(result.get('label', 'NEUTRAL')).lower()
|
131 |
+
score = result.get('score', 0.0) * 100
|
132 |
+
text = result_payload['text']
|
133 |
+
|
134 |
+
# Dynamically build the HTML fragment to be sent to the client.
|
135 |
+
html_fragment = f"""
|
136 |
+
<div>
|
137 |
+
<blockquote>{text}</blockquote>
|
138 |
+
<p>
|
139 |
+
<strong>Result:</strong>
|
140 |
+
<span class="sentiment-{label}">{label.upper()}</span>
|
141 |
+
(Confidence: {score:.1f}%)
|
142 |
+
</p>
|
143 |
+
</div>
|
144 |
+
"""
|
145 |
+
# Send the fragment using our custom event name.
|
146 |
+
yield f"event: sentiment_update\ndata: {html_fragment.replace('\n', '')}\n\n"
|
147 |
+
except (KeyError, TypeError):
|
148 |
+
continue # Ignore malformed payloads
|
149 |
+
|
150 |
+
return StreamingResponse(event_generator(), media_type="text/event-stream")
|
151 |
+
|
152 |
+
# --- Main execution block for local development ---
|
153 |
if __name__ == "__main__":
|
|
|
154 |
import uvicorn
|
155 |
+
# Correct run command for a file named 'app.py'
|
156 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|