Spaces:
Running
Running
Create gemini_analyzer.py
Browse files- app/gemini_analyzer.py +90 -0
app/gemini_analyzer.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A sophisticated analyzer using the Google Gemini Pro API.
|
3 |
+
|
4 |
+
This module provides structured analysis of financial text, including:
|
5 |
+
- Nuanced sentiment with reasoning.
|
6 |
+
- Key entity extraction (e.g., cryptocurrencies).
|
7 |
+
- Topic classification.
|
8 |
+
- Potential market impact assessment.
|
9 |
+
"""
|
10 |
+
import os
|
11 |
+
import logging
|
12 |
+
import httpx
|
13 |
+
from typing import Optional, TypedDict, List
|
14 |
+
|
15 |
+
# Configure logging
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# --- Pydantic-like models for structured output ---
|
19 |
+
class AnalysisResult(TypedDict):
|
20 |
+
sentiment: str
|
21 |
+
sentiment_score: float
|
22 |
+
reason: str
|
23 |
+
entities: List[str]
|
24 |
+
topic: str
|
25 |
+
impact: str
|
26 |
+
summary: str
|
27 |
+
error: Optional[str]
|
28 |
+
|
29 |
+
class GeminiAnalyzer:
|
30 |
+
"""Manages interaction with the Google Gemini API for deep text analysis."""
|
31 |
+
|
32 |
+
API_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent"
|
33 |
+
|
34 |
+
def __init__(self, client: httpx.AsyncClient, api_key: Optional[str] = None):
|
35 |
+
self.client = client
|
36 |
+
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
37 |
+
if not self.api_key:
|
38 |
+
raise ValueError("GEMINI_API_KEY is not set. Please add it as a repository secret.")
|
39 |
+
self.params = {"key": self.api_key}
|
40 |
+
self.headers = {"Content-Type": "application/json"}
|
41 |
+
|
42 |
+
def _build_prompt(self, text: str) -> dict:
|
43 |
+
"""Creates the structured JSON prompt for the Gemini API."""
|
44 |
+
# This is where the magic happens. We're "prompt engineering" Gemini.
|
45 |
+
return {
|
46 |
+
"contents": [{
|
47 |
+
"parts": [{
|
48 |
+
"text": f"""
|
49 |
+
Analyze the following financial text from the cryptocurrency world.
|
50 |
+
Provide your analysis as a single, minified JSON object with NO markdown formatting.
|
51 |
+
|
52 |
+
The JSON object must have these exact keys: "sentiment", "sentiment_score", "reason", "entities", "topic", "impact", "summary".
|
53 |
+
|
54 |
+
- "sentiment": MUST be one of "POSITIVE", "NEGATIVE", or "NEUTRAL".
|
55 |
+
- "sentiment_score": A float between -1.0 (very negative) and 1.0 (very positive).
|
56 |
+
- "reason": A brief, one-sentence explanation for the sentiment score.
|
57 |
+
- "entities": A JSON array of strings listing the primary cryptocurrencies or tokens mentioned (e.g., ["Bitcoin", "ETH"]).
|
58 |
+
- "topic": MUST be one of "Regulation", "Partnership", "Technical Update", "Market Hype", "Security", or "General News".
|
59 |
+
- "impact": Assess the potential short-term market impact. MUST be one of "LOW", "MEDIUM", or "HIGH".
|
60 |
+
- "summary": A concise, one-sentence summary of the provided text.
|
61 |
+
|
62 |
+
Text to analyze: "{text}"
|
63 |
+
"""
|
64 |
+
}]
|
65 |
+
}]
|
66 |
+
}
|
67 |
+
|
68 |
+
async def analyze_text(self, text: str) -> AnalysisResult:
|
69 |
+
"""Sends text to Gemini and returns a structured analysis."""
|
70 |
+
prompt = self._build_prompt(text)
|
71 |
+
try:
|
72 |
+
response = await self.client.post(self.API_URL, headers=self.headers, params=self.params, json=prompt, timeout=60.0)
|
73 |
+
response.raise_for_status()
|
74 |
+
|
75 |
+
# Extract the JSON content from the response
|
76 |
+
full_response = response.json()
|
77 |
+
json_text = full_response["candidates"][0]["content"]["parts"][0]["text"]
|
78 |
+
|
79 |
+
# The output is a JSON string, so we parse it.
|
80 |
+
analysis = json.loads(json_text)
|
81 |
+
analysis["error"] = None
|
82 |
+
return analysis
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"❌ Gemini API Error: {e}")
|
86 |
+
return {
|
87 |
+
"sentiment": "ERROR", "sentiment_score": 0, "reason": str(e),
|
88 |
+
"entities": [], "topic": "Unknown", "impact": "Unknown",
|
89 |
+
"summary": "Failed to analyze text.", "error": str(e)
|
90 |
+
}
|