DataBiz / app.py
mgbam's picture
Update app.py
cca00cd verified
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import base64
import io
from groq import Groq
from pydantic import BaseModel, Field
from typing import Dict, List, Optional
from langchain.tools import tool
from langchain.agents import initialize_agent, AgentType # You are not using this!
from scipy.stats import ttest_ind, f_oneway
from statsmodels.tsa.seasonal import seasonal_decompose # For temporal Analysis
from statsmodels.tsa.stattools import adfuller # For temporal Analysis
from langchain.prompts import PromptTemplate # For groq LLM
# Initialize Groq Client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
class ResearchInput(BaseModel):
"""Base schema for research tool inputs"""
data_key: str = Field(..., description="Session state key containing DataFrame")
columns: Optional[List[str]] = Field(None, description="List of columns to analyze")
class TemporalAnalysisInput(ResearchInput):
"""Schema for temporal analysis"""
time_col: str = Field(..., description="Name of timestamp column")
value_col: str = Field(..., description="Name of value column to analyze")
class HypothesisInput(ResearchInput):
"""Schema for hypothesis testing"""
group_col: str = Field(..., description="Categorical column defining groups")
value_col: str = Field(..., description="Numerical column to compare")
class GroqResearcher:
"""Advanced AI Research Engine using Groq"""
def __init__(self, model_name="mixtral-8x7b-32768"):
self.model_name = model_name
self.system_template = """You are a senior data scientist at a research institution.
Analyze this dataset with rigorous statistical methods and provide academic-quality insights:
{dataset_info}
User Question: {query}
Required Format:
- Executive Summary (1 paragraph)
- Methodology (bullet points)
- Key Findings (numbered list)
- Limitations
- Recommended Next Steps"""
def research(self, query: str, data: pd.DataFrame) -> str:
"""Conduct academic-level analysis using Groq"""
try:
dataset_info = f"""
Dataset Dimensions: {data.shape}
Variables: {', '.join(data.columns)}
Temporal Coverage: {data.select_dtypes(include='datetime').columns.tolist()}
Missing Values: {data.isnull().sum().to_dict()}
"""
prompt = PromptTemplate.from_template(self.system_template).format(
dataset_info=dataset_info,
query=query
)
completion = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a research AI assistant"},
{"role": "user", "content": prompt}
],
model=self.model_name,
temperature=0.2,
max_tokens=4096,
stream=False
)
return completion.choices[0].message.content
except Exception as e:
return f"Research Error: {str(e)}"
@tool(args_schema=ResearchInput)
def advanced_eda(data_key: str) -> Dict:
"""Comprehensive Exploratory Data Analysis with Statistical Profiling"""
try:
data = st.session_state[data_key]
analysis = {
"dimensionality": {
"rows": len(data),
"columns": list(data.columns),
"memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
},
"statistical_profile": data.describe(percentiles=[.25, .5, .75]).to_dict(),
"temporal_analysis": {
"date_ranges": {
col: {
"min": data[col].min(),
"max": data[col].max()
} for col in data.select_dtypes(include='datetime').columns
}
},
"data_quality": {
"missing_values": data.isnull().sum().to_dict(),
"duplicates": data.duplicated().sum(),
"cardinality": {
col: data[col].nunique() for col in data.columns
}
}
}
return analysis
except Exception as e:
return {"error": f"EDA Failed: {str(e)}"}
@tool(args_schema=ResearchInput)
def visualize_distributions(data_key: str, columns: List[str]) -> str:
"""Generate publication-quality distribution visualizations"""
try:
data = st.session_state[data_key]
plt.figure(figsize=(12, 6))
for i, col in enumerate(columns, 1):
plt.subplot(1, len(columns), i)
sns.histplot(data[col], kde=True, stat="density")
plt.title(f'Distribution of {col}', fontsize=10)
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
plt.close()
return base64.b64encode(buf.getvalue()).decode()
except Exception as e:
return f"Visualization Error: {str(e)}"
@tool(args_schema=TemporalAnalysisInput)
def temporal_analysis(data_key: str, time_col: str, value_col: str) -> Dict:
"""Time Series Decomposition and Trend Analysis"""
try:
data = st.session_state[data_key]
ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col]
decomposition = seasonal_decompose(ts_data, period=365)
plt.figure(figsize=(12, 8))
decomposition.plot()
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
plot_data = base64.b64encode(buf.getvalue()).decode()
return {
"trend_statistics": {
"stationarity": adfuller(ts_data)[1],
"seasonality_strength": max(decomposition.seasonal)
},
"visualization": plot_data
}
except Exception as e:
return {"error": f"Temporal Analysis Failed: {str(e)}"}
@tool(args_schema=HypothesisInput)
def hypothesis_testing(data_key: str, group_col: str, value_col: str) -> Dict:
"""Statistical Hypothesis Testing with Automated Assumption Checking"""
try:
data = st.session_state[data_key]
groups = data[group_col].unique()
if len(groups) < 2:
return {"error": "Insufficient groups for comparison"}
if len(groups) == 2:
group_data = [data[data[group_col] == g][value_col] for g in groups]
stat, p = ttest_ind(*group_data)
test_type = "Independent t-test"
else:
group_data = [data[data[group_col] == g][value_col] for g in groups]
stat, p = f_oneway(*group_data)
test_type = "ANOVA"
return {
"test_type": test_type,
"test_statistic": stat,
"p_value": p,
"effect_size": {
"cohens_d": abs(group_data[0].mean() - group_data[1].mean())/np.sqrt(
(group_data[0].var() + group_data[1].var())/2
) if len(groups) == 2 else None
},
"interpretation": interpret_p_value(p)
}
except Exception as e:
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
def interpret_p_value(p: float) -> str:
"""Scientific interpretation of p-values"""
if p < 0.001: return "Very strong evidence against H0"
elif p < 0.01: return "Strong evidence against H0"
elif p < 0.05: return "Evidence against H0"
elif p < 0.1: return "Weak evidence against H0"
else: return "No significant evidence against H0"
def main():
st.set_page_config(page_title="AI Research Lab", layout="wide")
st.title("🧪 Advanced AI Research Laboratory")
# Session state initialization
if 'data' not in st.session_state:
st.session_state.data = None
if 'researcher' not in st.session_state:
st.session_state.researcher = GroqResearcher()
# Data upload and management
with st.sidebar:
st.header("🔬 Data Management")
uploaded_file = st.file_uploader("Upload research dataset", type=["csv", "parquet"])
if uploaded_file:
with st.spinner("Initializing dataset..."):
try:
st.session_state.data = pd.read_csv(uploaded_file)
st.success(f"Loaded {len(st.session_state.data):,} research observations")
except Exception as e:
st.error(f"Error loading dataset: {e}")
# Main research interface
if st.session_state.data is not None:
col1, col2 = st.columns([1, 3])
with col1:
st.subheader("Dataset Metadata")
st.json({
"Variables": list(st.session_state.data.columns),
"Time Range": {
col: {
"min": st.session_state.data[col].min(),
"max": st.session_state.data[col].max()
} for col in st.session_state.data.select_dtypes(include='datetime').columns
},
"Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
})
with col2:
analysis_tab, research_tab = st.tabs(["Automated Analysis", "Custom Research"])
with analysis_tab:
analysis_type = st.selectbox("Select Analysis Mode", [
"Exploratory Data Analysis",
"Temporal Pattern Analysis",
"Comparative Statistics",
"Distribution Analysis"
])
if analysis_type == "Exploratory Data Analysis":
eda_result = advanced_eda.invoke({"data_key": "data"})
st.subheader("Data Quality Report")
st.json(eda_result)
elif analysis_type == "Temporal Pattern Analysis":
time_col = st.selectbox("Temporal Variable",
st.session_state.data.select_dtypes(include='datetime').columns)
value_col = st.selectbox("Analysis Variable",
st.session_state.data.select_dtypes(include=np.number).columns)
if time_col and value_col:
result = temporal_analysis.invoke({
"data_key": "data",
"time_col": time_col,
"value_col": value_col
})
if "visualization" in result:
st.image(f"data:image/png;base64,{result['visualization']}")
st.json(result)
elif analysis_type == "Comparative Statistics":
group_col = st.selectbox("Grouping Variable",
st.session_state.data.select_dtypes(include='category').columns)
value_col = st.selectbox("Metric Variable",
st.session_state.data.select_dtypes(include=np.number).columns)
if group_col and value_col:
result = hypothesis_testing.invoke({
"data_key": "data",
"group_col": group_col,
"value_col": value_col
})
st.subheader("Statistical Test Results")
st.json(result)
elif analysis_type == "Distribution Analysis":
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
selected_cols = st.multiselect("Select Variables", num_cols)
if selected_cols:
img_data = visualize_distributions.invoke({
"data_key": "data",
"columns": selected_cols
})
st.image(f"data:image/png;base64,{img_data}")
with research_tab:
research_query = st.text_area("Enter Research Question:", height=150,
placeholder="E.g., 'What factors are most predictive of X outcome?'")
if st.button("Execute Research"):
with st.spinner("Conducting rigorous analysis..."):
result = st.session_state.researcher.research(
research_query, st.session_state.data
)
st.markdown("## Research Findings")
st.markdown(result)
if __name__ == "__main__":
main()