Update app.py
Browse files
app.py
CHANGED
@@ -31,8 +31,10 @@ class GroqLLM:
|
|
31 |
"""
|
32 |
Initialize the GroqLLM with a specified model.
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
"""
|
37 |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
38 |
self.model_name = model_name
|
@@ -41,11 +43,15 @@ class GroqLLM:
|
|
41 |
"""
|
42 |
Make the class callable as required by smolagents.
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
Returns
|
48 |
-
|
|
|
|
|
49 |
"""
|
50 |
try:
|
51 |
# Handle different prompt formats
|
@@ -83,10 +89,14 @@ class DataAnalysisAgent(CodeAgent):
|
|
83 |
"""
|
84 |
Initialize the DataAnalysisAgent with the provided dataset.
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
"""
|
91 |
super().__init__(*args, **kwargs)
|
92 |
self._dataset = dataset
|
@@ -96,8 +106,10 @@ class DataAnalysisAgent(CodeAgent):
|
|
96 |
def dataset(self) -> pd.DataFrame:
|
97 |
"""Access the stored dataset.
|
98 |
|
99 |
-
Returns
|
100 |
-
|
|
|
|
|
101 |
"""
|
102 |
return self._dataset
|
103 |
|
@@ -105,11 +117,15 @@ class DataAnalysisAgent(CodeAgent):
|
|
105 |
"""
|
106 |
Override the run method to include dataset context and support predictive tasks.
|
107 |
|
108 |
-
|
109 |
-
|
|
|
|
|
110 |
|
111 |
-
Returns
|
112 |
-
|
|
|
|
|
113 |
"""
|
114 |
dataset_info = f"""
|
115 |
Dataset Shape: {self.dataset.shape}
|
@@ -140,15 +156,18 @@ def analyze_basic_stats(data: Optional[pd.DataFrame] = None) -> str:
|
|
140 |
columns in the provided DataFrame. It also generates a bar chart visualizing
|
141 |
the mean, median, and standard deviation for each numerical feature.
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
152 |
"""
|
153 |
if data is None:
|
154 |
data = tool.agent.dataset
|
@@ -194,15 +213,18 @@ def generate_correlation_matrix(data: Optional[pd.DataFrame] = None) -> str:
|
|
194 |
all numerical columns in the dataset. Users can hover over cells to see correlation values
|
195 |
and interact with the plot (zoom, pan).
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
206 |
"""
|
207 |
if data is None:
|
208 |
data = tool.agent.dataset
|
@@ -232,15 +254,18 @@ def analyze_categorical_columns(data: Optional[pd.DataFrame] = None) -> str:
|
|
232 |
and missing value counts. It also generates bar charts for the top 5 categories in each
|
233 |
categorical feature.
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
244 |
"""
|
245 |
if data is None:
|
246 |
data = tool.agent.dataset
|
@@ -288,15 +313,18 @@ def suggest_features(data: Optional[pd.DataFrame] = None) -> str:
|
|
288 |
This function analyzes the dataset's structure and statistical properties to
|
289 |
recommend possible feature engineering steps that could improve model performance.
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
300 |
"""
|
301 |
if data is None:
|
302 |
data = tool.agent.dataset
|
@@ -337,18 +365,21 @@ def predictive_analysis(data: Optional[pd.DataFrame] = None, target: Optional[st
|
|
337 |
This function builds a classification model using Random Forest, evaluates its performance,
|
338 |
and provides detailed metrics and visualizations such as the confusion matrix and ROC curve.
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
target
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
352 |
"""
|
353 |
if data is None:
|
354 |
data = tool.agent.dataset
|
@@ -450,12 +481,16 @@ def export_report(content: str, filename: str):
|
|
450 |
This function converts markdown content into a PDF file using pdfkit and provides
|
451 |
a download button for users to obtain the report.
|
452 |
|
453 |
-
|
454 |
-
|
455 |
-
|
|
|
|
|
|
|
456 |
|
457 |
-
Returns
|
458 |
-
|
|
|
459 |
"""
|
460 |
# Save content to a temporary HTML file
|
461 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as tmp_file:
|
|
|
31 |
"""
|
32 |
Initialize the GroqLLM with a specified model.
|
33 |
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
model_name : str
|
37 |
+
The name of the language model to use.
|
38 |
"""
|
39 |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
40 |
self.model_name = model_name
|
|
|
43 |
"""
|
44 |
Make the class callable as required by smolagents.
|
45 |
|
46 |
+
Parameters
|
47 |
+
----------
|
48 |
+
prompt : Union[str, dict, List[Dict]]
|
49 |
+
The input prompt for the language model.
|
50 |
|
51 |
+
Returns
|
52 |
+
-------
|
53 |
+
str
|
54 |
+
The generated response from the language model.
|
55 |
"""
|
56 |
try:
|
57 |
# Handle different prompt formats
|
|
|
89 |
"""
|
90 |
Initialize the DataAnalysisAgent with the provided dataset.
|
91 |
|
92 |
+
Parameters
|
93 |
+
----------
|
94 |
+
dataset : pd.DataFrame
|
95 |
+
The dataset to analyze.
|
96 |
+
*args : tuple
|
97 |
+
Variable length argument list.
|
98 |
+
**kwargs : dict
|
99 |
+
Arbitrary keyword arguments.
|
100 |
"""
|
101 |
super().__init__(*args, **kwargs)
|
102 |
self._dataset = dataset
|
|
|
106 |
def dataset(self) -> pd.DataFrame:
|
107 |
"""Access the stored dataset.
|
108 |
|
109 |
+
Returns
|
110 |
+
-------
|
111 |
+
pd.DataFrame
|
112 |
+
The dataset stored in the agent.
|
113 |
"""
|
114 |
return self._dataset
|
115 |
|
|
|
117 |
"""
|
118 |
Override the run method to include dataset context and support predictive tasks.
|
119 |
|
120 |
+
Parameters
|
121 |
+
----------
|
122 |
+
prompt : str
|
123 |
+
The task prompt for analysis.
|
124 |
|
125 |
+
Returns
|
126 |
+
-------
|
127 |
+
str
|
128 |
+
The result of the analysis.
|
129 |
"""
|
130 |
dataset_info = f"""
|
131 |
Dataset Shape: {self.dataset.shape}
|
|
|
156 |
columns in the provided DataFrame. It also generates a bar chart visualizing
|
157 |
the mean, median, and standard deviation for each numerical feature.
|
158 |
|
159 |
+
Parameters
|
160 |
+
----------
|
161 |
+
data : Optional[pd.DataFrame], optional
|
162 |
+
A pandas DataFrame containing the dataset to analyze.
|
163 |
+
If None, the agent's stored dataset will be used.
|
164 |
+
The DataFrame should contain at least one numerical column
|
165 |
+
for meaningful analysis.
|
166 |
+
|
167 |
+
Returns
|
168 |
+
-------
|
169 |
+
str
|
170 |
+
A markdown-formatted string containing the statistics and the generated plot.
|
171 |
"""
|
172 |
if data is None:
|
173 |
data = tool.agent.dataset
|
|
|
213 |
all numerical columns in the dataset. Users can hover over cells to see correlation values
|
214 |
and interact with the plot (zoom, pan).
|
215 |
|
216 |
+
Parameters
|
217 |
+
----------
|
218 |
+
data : Optional[pd.DataFrame], optional
|
219 |
+
A pandas DataFrame containing the dataset to analyze.
|
220 |
+
If None, the agent's stored dataset will be used.
|
221 |
+
The DataFrame should contain at least two numerical columns
|
222 |
+
for correlation analysis.
|
223 |
+
|
224 |
+
Returns
|
225 |
+
-------
|
226 |
+
str
|
227 |
+
An HTML string representing the interactive correlation matrix plot.
|
228 |
"""
|
229 |
if data is None:
|
230 |
data = tool.agent.dataset
|
|
|
254 |
and missing value counts. It also generates bar charts for the top 5 categories in each
|
255 |
categorical feature.
|
256 |
|
257 |
+
Parameters
|
258 |
+
----------
|
259 |
+
data : Optional[pd.DataFrame], optional
|
260 |
+
A pandas DataFrame containing the dataset to analyze.
|
261 |
+
If None, the agent's stored dataset will be used.
|
262 |
+
The DataFrame should contain at least one categorical column
|
263 |
+
for meaningful analysis.
|
264 |
+
|
265 |
+
Returns
|
266 |
+
-------
|
267 |
+
str
|
268 |
+
A markdown-formatted string containing analysis results and embedded plots.
|
269 |
"""
|
270 |
if data is None:
|
271 |
data = tool.agent.dataset
|
|
|
313 |
This function analyzes the dataset's structure and statistical properties to
|
314 |
recommend possible feature engineering steps that could improve model performance.
|
315 |
|
316 |
+
Parameters
|
317 |
+
----------
|
318 |
+
data : Optional[pd.DataFrame], optional
|
319 |
+
A pandas DataFrame containing the dataset to analyze.
|
320 |
+
If None, the agent's stored dataset will be used.
|
321 |
+
The DataFrame can contain both numerical and categorical columns.
|
322 |
+
|
323 |
+
Returns
|
324 |
+
-------
|
325 |
+
str
|
326 |
+
A string containing suggestions for feature engineering based on
|
327 |
+
the characteristics of the input data.
|
328 |
"""
|
329 |
if data is None:
|
330 |
data = tool.agent.dataset
|
|
|
365 |
This function builds a classification model using Random Forest, evaluates its performance,
|
366 |
and provides detailed metrics and visualizations such as the confusion matrix and ROC curve.
|
367 |
|
368 |
+
Parameters
|
369 |
+
----------
|
370 |
+
data : Optional[pd.DataFrame], optional
|
371 |
+
A pandas DataFrame containing the dataset to analyze.
|
372 |
+
If None, the agent's stored dataset will be used.
|
373 |
+
The DataFrame should contain the target variable for prediction.
|
374 |
+
target : Optional[str], optional
|
375 |
+
The name of the target variable column in the dataset.
|
376 |
+
If None, the agent must provide the target variable through the prompt.
|
377 |
+
|
378 |
+
Returns
|
379 |
+
-------
|
380 |
+
str
|
381 |
+
A markdown-formatted string containing the classification report, confusion matrix,
|
382 |
+
ROC curve, AUC score, and a unique Model ID.
|
383 |
"""
|
384 |
if data is None:
|
385 |
data = tool.agent.dataset
|
|
|
481 |
This function converts markdown content into a PDF file using pdfkit and provides
|
482 |
a download button for users to obtain the report.
|
483 |
|
484 |
+
Parameters
|
485 |
+
----------
|
486 |
+
content : str
|
487 |
+
The markdown content to be included in the PDF report.
|
488 |
+
filename : str
|
489 |
+
The desired name for the exported PDF file.
|
490 |
|
491 |
+
Returns
|
492 |
+
-------
|
493 |
+
None
|
494 |
"""
|
495 |
# Save content to a temporary HTML file
|
496 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as tmp_file:
|