Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,310 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
}
|
18 |
-
|
19 |
-
|
20 |
-
"
|
21 |
-
|
22 |
-
|
23 |
-
)
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
else:
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
import os
|
7 |
+
import base64
|
8 |
+
import io
|
9 |
+
from groq import Groq
|
10 |
+
from pydantic import BaseModel, Field
|
11 |
+
from typing import Dict, List, Optional
|
12 |
+
from langchain.tools import tool
|
13 |
+
from langchain.agents import initialize_agent, AgentType
|
14 |
+
from scipy.stats import ttest_ind, f_oneway
|
15 |
+
|
16 |
+
# Initialize Groq Client
|
17 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
18 |
+
|
19 |
+
class ResearchInput(BaseModel):
|
20 |
+
"""Base schema for research tool inputs"""
|
21 |
+
data_key: str = Field(..., description="Session state key containing DataFrame")
|
22 |
+
columns: Optional[List[str]] = Field(None, description="List of columns to analyze")
|
23 |
+
|
24 |
+
class TemporalAnalysisInput(ResearchInput):
|
25 |
+
"""Schema for temporal analysis"""
|
26 |
+
time_col: str = Field(..., description="Name of timestamp column")
|
27 |
+
value_col: str = Field(..., description="Name of value column to analyze")
|
28 |
+
|
29 |
+
class HypothesisInput(ResearchInput):
|
30 |
+
"""Schema for hypothesis testing"""
|
31 |
+
group_col: str = Field(..., description="Categorical column defining groups")
|
32 |
+
value_col: str = Field(..., description="Numerical column to compare")
|
33 |
+
|
34 |
+
class GroqResearcher:
|
35 |
+
"""Advanced AI Research Engine using Groq"""
|
36 |
+
def __init__(self, model_name="mixtral-8x7b-32768"):
|
37 |
+
self.model_name = model_name
|
38 |
+
self.system_template = """You are a senior data scientist at a research institution.
|
39 |
+
Analyze this dataset with rigorous statistical methods and provide academic-quality insights:
|
40 |
+
{dataset_info}
|
41 |
+
|
42 |
+
User Question: {query}
|
43 |
+
|
44 |
+
Required Format:
|
45 |
+
- Executive Summary (1 paragraph)
|
46 |
+
- Methodology (bullet points)
|
47 |
+
- Key Findings (numbered list)
|
48 |
+
- Limitations
|
49 |
+
- Recommended Next Steps"""
|
50 |
+
|
51 |
+
def research(self, query: str, data: pd.DataFrame) -> str:
|
52 |
+
"""Conduct academic-level analysis using Groq"""
|
53 |
+
try:
|
54 |
+
dataset_info = f"""
|
55 |
+
Dataset Dimensions: {data.shape}
|
56 |
+
Variables: {', '.join(data.columns)}
|
57 |
+
Temporal Coverage: {data.select_dtypes(include='datetime').columns.tolist()}
|
58 |
+
Missing Values: {data.isnull().sum().to_dict()}
|
59 |
+
"""
|
60 |
+
|
61 |
+
prompt = PromptTemplate.from_template(self.system_template).format(
|
62 |
+
dataset_info=dataset_info,
|
63 |
+
query=query
|
64 |
+
)
|
65 |
+
|
66 |
+
completion = client.chat.completions.create(
|
67 |
+
messages=[
|
68 |
+
{"role": "system", "content": "You are a research AI assistant"},
|
69 |
+
{"role": "user", "content": prompt}
|
70 |
+
],
|
71 |
+
model=self.model_name,
|
72 |
+
temperature=0.2,
|
73 |
+
max_tokens=4096,
|
74 |
+
stream=False
|
75 |
+
)
|
76 |
+
|
77 |
+
return completion.choices[0].message.content
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
return f"Research Error: {str(e)}"
|
81 |
+
|
82 |
+
@tool(args_schema=ResearchInput)
|
83 |
+
def advanced_eda(data_key: str) -> Dict:
|
84 |
+
"""Comprehensive Exploratory Data Analysis with Statistical Profiling"""
|
85 |
+
try:
|
86 |
+
data = st.session_state[data_key]
|
87 |
+
analysis = {
|
88 |
+
"dimensionality": {
|
89 |
+
"rows": len(data),
|
90 |
+
"columns": list(data.columns),
|
91 |
+
"memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
|
92 |
+
},
|
93 |
+
"statistical_profile": data.describe(percentiles=[.25, .5, .75]).to_dict(),
|
94 |
+
"temporal_analysis": {
|
95 |
+
"date_ranges": {
|
96 |
+
col: {
|
97 |
+
"min": data[col].min(),
|
98 |
+
"max": data[col].max()
|
99 |
+
} for col in data.select_dtypes(include='datetime').columns
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"data_quality": {
|
103 |
+
"missing_values": data.isnull().sum().to_dict(),
|
104 |
+
"duplicates": data.duplicated().sum(),
|
105 |
+
"cardinality": {
|
106 |
+
col: data[col].nunique() for col in data.columns
|
107 |
+
}
|
108 |
+
}
|
109 |
}
|
110 |
+
return analysis
|
111 |
+
except Exception as e:
|
112 |
+
return {"error": f"EDA Failed: {str(e)}"}
|
113 |
+
|
114 |
+
@tool(args_schema=ResearchInput)
|
115 |
+
def visualize_distributions(data_key: str, columns: List[str]) -> str:
|
116 |
+
"""Generate publication-quality distribution visualizations"""
|
117 |
+
try:
|
118 |
+
data = st.session_state[data_key]
|
119 |
+
plt.figure(figsize=(12, 6))
|
120 |
+
for i, col in enumerate(columns, 1):
|
121 |
+
plt.subplot(1, len(columns), i)
|
122 |
+
sns.histplot(data[col], kde=True, stat="density")
|
123 |
+
plt.title(f'Distribution of {col}', fontsize=10)
|
124 |
+
plt.xticks(fontsize=8)
|
125 |
+
plt.yticks(fontsize=8)
|
126 |
+
plt.tight_layout()
|
127 |
+
|
128 |
+
buf = io.BytesIO()
|
129 |
+
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
130 |
+
plt.close()
|
131 |
+
return base64.b64encode(buf.getvalue()).decode()
|
132 |
+
except Exception as e:
|
133 |
+
return f"Visualization Error: {str(e)}"
|
134 |
+
|
135 |
+
@tool(args_schema=TemporalAnalysisInput)
|
136 |
+
def temporal_analysis(data_key: str, time_col: str, value_col: str) -> Dict:
|
137 |
+
"""Time Series Decomposition and Trend Analysis"""
|
138 |
+
try:
|
139 |
+
data = st.session_state[data_key]
|
140 |
+
ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col]
|
141 |
+
|
142 |
+
decomposition = seasonal_decompose(ts_data, period=365)
|
143 |
+
|
144 |
+
plt.figure(figsize=(12, 8))
|
145 |
+
decomposition.plot()
|
146 |
+
plt.tight_layout()
|
147 |
+
|
148 |
+
buf = io.BytesIO()
|
149 |
+
plt.savefig(buf, format='png')
|
150 |
+
plt.close()
|
151 |
+
plot_data = base64.b64encode(buf.getvalue()).decode()
|
152 |
+
|
153 |
+
return {
|
154 |
+
"trend_statistics": {
|
155 |
+
"stationarity": adfuller(ts_data)[1],
|
156 |
+
"seasonality_strength": max(decomposition.seasonal)
|
157 |
+
},
|
158 |
+
"visualization": plot_data
|
159 |
+
}
|
160 |
+
except Exception as e:
|
161 |
+
return {"error": f"Temporal Analysis Failed: {str(e)}"}
|
162 |
+
|
163 |
+
@tool(args_schema=HypothesisInput)
|
164 |
+
def hypothesis_testing(data_key: str, group_col: str, value_col: str) -> Dict:
|
165 |
+
"""Statistical Hypothesis Testing with Automated Assumption Checking"""
|
166 |
+
try:
|
167 |
+
data = st.session_state[data_key]
|
168 |
+
groups = data[group_col].unique()
|
169 |
+
|
170 |
+
if len(groups) < 2:
|
171 |
+
return {"error": "Insufficient groups for comparison"}
|
172 |
+
|
173 |
+
if len(groups) == 2:
|
174 |
+
group_data = [data[data[group_col] == g][value_col] for g in groups]
|
175 |
+
stat, p = ttest_ind(*group_data)
|
176 |
+
test_type = "Independent t-test"
|
177 |
else:
|
178 |
+
group_data = [data[data[group_col] == g][value_col] for g in groups]
|
179 |
+
stat, p = f_oneway(*group_data)
|
180 |
+
test_type = "ANOVA"
|
181 |
+
|
182 |
+
return {
|
183 |
+
"test_type": test_type,
|
184 |
+
"test_statistic": stat,
|
185 |
+
"p_value": p,
|
186 |
+
"effect_size": {
|
187 |
+
"cohens_d": abs(group_data[0].mean() - group_data[1].mean())/np.sqrt(
|
188 |
+
(group_data[0].var() + group_data[1].var())/2
|
189 |
+
) if len(groups) == 2 else None
|
190 |
+
},
|
191 |
+
"interpretation": interpret_p_value(p)
|
192 |
+
}
|
193 |
+
except Exception as e:
|
194 |
+
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
|
195 |
+
|
196 |
+
def interpret_p_value(p: float) -> str:
|
197 |
+
"""Scientific interpretation of p-values"""
|
198 |
+
if p < 0.001: return "Very strong evidence against H0"
|
199 |
+
elif p < 0.01: return "Strong evidence against H0"
|
200 |
+
elif p < 0.05: return "Evidence against H0"
|
201 |
+
elif p < 0.1: return "Weak evidence against H0"
|
202 |
+
else: return "No significant evidence against H0"
|
203 |
+
|
204 |
+
def main():
|
205 |
+
st.set_page_config(page_title="AI Research Lab", layout="wide")
|
206 |
+
st.title("🧪 Advanced AI Research Laboratory")
|
207 |
+
|
208 |
+
# Session state initialization
|
209 |
+
if 'data' not in st.session_state:
|
210 |
+
st.session_state.data = None
|
211 |
+
if 'researcher' not in st.session_state:
|
212 |
+
st.session_state.researcher = GroqResearcher()
|
213 |
+
|
214 |
+
# Data upload and management
|
215 |
+
with st.sidebar:
|
216 |
+
st.header("🔬 Data Management")
|
217 |
+
uploaded_file = st.file_uploader("Upload research dataset", type=["csv", "parquet"])
|
218 |
+
if uploaded_file:
|
219 |
+
with st.spinner("Initializing dataset..."):
|
220 |
+
st.session_state.data = pd.read_csv(uploaded_file)
|
221 |
+
st.success(f"Loaded {len(st.session_state.data):,} research observations")
|
222 |
+
|
223 |
+
# Main research interface
|
224 |
+
if st.session_state.data is not None:
|
225 |
+
col1, col2 = st.columns([1, 3])
|
226 |
+
|
227 |
+
with col1:
|
228 |
+
st.subheader("Dataset Metadata")
|
229 |
+
st.json({
|
230 |
+
"Variables": list(st.session_state.data.columns),
|
231 |
+
"Time Range": {
|
232 |
+
col: {
|
233 |
+
"min": st.session_state.data[col].min(),
|
234 |
+
"max": st.session_state.data[col].max()
|
235 |
+
} for col in st.session_state.data.select_dtypes(include='datetime').columns
|
236 |
+
},
|
237 |
+
"Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
|
238 |
+
})
|
239 |
+
|
240 |
+
with col2:
|
241 |
+
analysis_tab, research_tab = st.tabs(["Automated Analysis", "Custom Research"])
|
242 |
+
|
243 |
+
with analysis_tab:
|
244 |
+
analysis_type = st.selectbox("Select Analysis Mode", [
|
245 |
+
"Exploratory Data Analysis",
|
246 |
+
"Temporal Pattern Analysis",
|
247 |
+
"Comparative Statistics",
|
248 |
+
"Distribution Analysis"
|
249 |
+
])
|
250 |
+
|
251 |
+
if analysis_type == "Exploratory Data Analysis":
|
252 |
+
eda_result = advanced_eda.invoke({"data_key": "data"})
|
253 |
+
st.subheader("Data Quality Report")
|
254 |
+
st.json(eda_result)
|
255 |
+
|
256 |
+
elif analysis_type == "Temporal Pattern Analysis":
|
257 |
+
time_col = st.selectbox("Temporal Variable",
|
258 |
+
st.session_state.data.select_dtypes(include='datetime').columns)
|
259 |
+
value_col = st.selectbox("Analysis Variable",
|
260 |
+
st.session_state.data.select_dtypes(include=np.number).columns)
|
261 |
+
|
262 |
+
if time_col and value_col:
|
263 |
+
result = temporal_analysis.invoke({
|
264 |
+
"data_key": "data",
|
265 |
+
"time_col": time_col,
|
266 |
+
"value_col": value_col
|
267 |
+
})
|
268 |
+
if "visualization" in result:
|
269 |
+
st.image(f"data:image/png;base64,{result['visualization']}")
|
270 |
+
st.json(result)
|
271 |
+
|
272 |
+
elif analysis_type == "Comparative Statistics":
|
273 |
+
group_col = st.selectbox("Grouping Variable",
|
274 |
+
st.session_state.data.select_dtypes(include='category').columns)
|
275 |
+
value_col = st.selectbox("Metric Variable",
|
276 |
+
st.session_state.data.select_dtypes(include=np.number).columns)
|
277 |
+
|
278 |
+
if group_col and value_col:
|
279 |
+
result = hypothesis_testing.invoke({
|
280 |
+
"data_key": "data",
|
281 |
+
"group_col": group_col,
|
282 |
+
"value_col": value_col
|
283 |
+
})
|
284 |
+
st.subheader("Statistical Test Results")
|
285 |
+
st.json(result)
|
286 |
+
|
287 |
+
elif analysis_type == "Distribution Analysis":
|
288 |
+
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
|
289 |
+
selected_cols = st.multiselect("Select Variables", num_cols)
|
290 |
+
if selected_cols:
|
291 |
+
img_data = visualize_distributions.invoke({
|
292 |
+
"data_key": "data",
|
293 |
+
"columns": selected_cols
|
294 |
+
})
|
295 |
+
st.image(f"data:image/png;base64,{img_data}")
|
296 |
+
|
297 |
+
with research_tab:
|
298 |
+
research_query = st.text_area("Enter Research Question:", height=150,
|
299 |
+
placeholder="E.g., 'What factors are most predictive of X outcome?'")
|
300 |
+
|
301 |
+
if st.button("Execute Research"):
|
302 |
+
with st.spinner("Conducting rigorous analysis..."):
|
303 |
+
result = st.session_state.researcher.research(
|
304 |
+
research_query, st.session_state.data
|
305 |
+
)
|
306 |
+
st.markdown("## Research Findings")
|
307 |
+
st.markdown(result)
|
308 |
|
309 |
+
if __name__ == "__main__":
|
310 |
+
main()
|