Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,64 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import streamlit as st
|
4 |
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
from smolagents import CodeAgent, tool
|
7 |
from typing import Union, List, Dict, Optional
|
8 |
import matplotlib.pyplot as plt
|
9 |
import seaborn as sns
|
|
|
10 |
import os
|
11 |
from groq import Groq
|
12 |
-
|
13 |
import tempfile
|
14 |
-
import
|
15 |
-
import io
|
16 |
|
17 |
-
|
18 |
-
#
|
19 |
-
#
|
|
|
20 |
class GroqLLM:
|
21 |
-
"""Compatible LLM interface for smolagents CodeAgent"""
|
22 |
-
|
23 |
-
def __init__(self, model_name
|
24 |
-
"""
|
25 |
-
Initialize the GroqLLM with the specified model.
|
26 |
-
|
27 |
-
Args:
|
28 |
-
model_name (str): The name of the language model to use.
|
29 |
-
"""
|
30 |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
31 |
self.model_name = model_name
|
32 |
-
|
33 |
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
34 |
-
"""
|
35 |
-
Make the class callable as required by smolagents.
|
36 |
-
|
37 |
-
Args:
|
38 |
-
prompt (Union[str, dict, List[Dict]]): The input prompt for the language model.
|
39 |
-
|
40 |
-
Returns:
|
41 |
-
str: The generated response from the language model.
|
42 |
-
"""
|
43 |
try:
|
44 |
-
# Handle different prompt formats
|
45 |
if isinstance(prompt, (dict, list)):
|
46 |
prompt_str = str(prompt)
|
47 |
else:
|
48 |
prompt_str = str(prompt)
|
49 |
-
|
50 |
-
# Create a properly formatted message
|
51 |
completion = self.client.chat.completions.create(
|
52 |
model=self.model_name,
|
53 |
-
messages=[{
|
54 |
-
"role": "user",
|
55 |
-
"content": prompt_str
|
56 |
-
}],
|
57 |
temperature=0.7,
|
58 |
max_tokens=1024,
|
59 |
-
stream=False
|
60 |
)
|
61 |
-
|
62 |
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
63 |
-
|
64 |
except Exception as e:
|
65 |
-
|
66 |
-
|
67 |
-
return error_msg
|
68 |
|
69 |
-
#
|
70 |
-
#
|
71 |
-
#
|
72 |
class DataAnalysisAgent(CodeAgent):
|
73 |
-
"""Extended CodeAgent with dataset awareness"""
|
74 |
-
|
75 |
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
|
76 |
-
"""
|
77 |
-
Initialize the DataAnalysisAgent with the provided dataset.
|
78 |
-
|
79 |
-
Args:
|
80 |
-
dataset (pd.DataFrame): The dataset to analyze.
|
81 |
-
*args: Variable length argument list.
|
82 |
-
**kwargs: Arbitrary keyword arguments.
|
83 |
-
"""
|
84 |
super().__init__(*args, **kwargs)
|
85 |
self._dataset = dataset
|
86 |
-
|
87 |
@property
|
88 |
def dataset(self) -> pd.DataFrame:
|
89 |
"""Access the stored dataset."""
|
90 |
return self._dataset
|
91 |
-
|
92 |
def run(self, prompt: str) -> str:
|
93 |
-
"""
|
94 |
-
Override run method to include dataset context.
|
95 |
-
|
96 |
-
Args:
|
97 |
-
prompt (str): The task prompt for analysis.
|
98 |
-
|
99 |
-
Returns:
|
100 |
-
str: The result of the analysis.
|
101 |
-
"""
|
102 |
dataset_info = f"""
|
103 |
Dataset Shape: {self.dataset.shape}
|
104 |
Columns: {', '.join(self.dataset.columns)}
|
@@ -114,303 +74,125 @@ class DataAnalysisAgent(CodeAgent):
|
|
114 |
"""
|
115 |
return super().run(enhanced_prompt)
|
116 |
|
117 |
-
# ------------------------------
|
118 |
-
# Tool Definitions
|
119 |
-
# ------------------------------
|
120 |
|
|
|
|
|
|
|
121 |
@tool
|
122 |
-
def analyze_basic_stats(data:
|
123 |
-
"""
|
124 |
-
Calculate basic statistical measures for numerical columns in the dataset.
|
125 |
-
|
126 |
-
This function computes fundamental statistical metrics including mean, median,
|
127 |
-
standard deviation, skewness, and counts of missing values for all numerical
|
128 |
-
columns in the provided DataFrame.
|
129 |
-
|
130 |
-
Args:
|
131 |
-
data (Optional[pd.DataFrame], optional):
|
132 |
-
A pandas DataFrame containing the dataset to analyze. The DataFrame
|
133 |
-
should contain at least one numerical column for meaningful analysis.
|
134 |
-
|
135 |
-
Returns:
|
136 |
-
str: A string containing formatted basic statistics for each numerical column,
|
137 |
-
including mean, median, standard deviation, skewness, and missing value counts.
|
138 |
-
"""
|
139 |
-
# Access dataset from agent if no data provided
|
140 |
if data is None:
|
141 |
data = tool.agent.dataset
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
for col in numeric_cols:
|
147 |
-
stats[col] = {
|
148 |
-
'mean': float(data[col].mean()),
|
149 |
-
'median': float(data[col].median()),
|
150 |
-
'std': float(data[col].std()),
|
151 |
-
'skew': float(data[col].skew()),
|
152 |
-
'missing': int(data[col].isnull().sum())
|
153 |
-
}
|
154 |
-
|
155 |
-
return str(stats)
|
156 |
|
157 |
@tool
|
158 |
-
def generate_correlation_matrix(data:
|
159 |
-
"""
|
160 |
-
Generate a visual correlation matrix for numerical columns in the dataset.
|
161 |
-
|
162 |
-
This function creates a heatmap visualization showing the correlations between
|
163 |
-
all numerical columns in the dataset. The correlation values are displayed
|
164 |
-
using a color-coded matrix for easy interpretation.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
data (Optional[pd.DataFrame], optional):
|
168 |
-
A pandas DataFrame containing the dataset to analyze. The DataFrame
|
169 |
-
should contain at least two numerical columns for correlation analysis.
|
170 |
-
|
171 |
-
Returns:
|
172 |
-
str: A base64 encoded string representing the correlation matrix plot image,
|
173 |
-
which can be displayed in a web interface or saved as an image file.
|
174 |
-
"""
|
175 |
-
# Access dataset from agent if no data provided
|
176 |
if data is None:
|
177 |
data = tool.agent.dataset
|
178 |
-
|
179 |
numeric_data = data.select_dtypes(include=[np.number])
|
180 |
-
|
181 |
plt.figure(figsize=(10, 8))
|
182 |
-
sns.heatmap(numeric_data.corr(), annot=True, cmap=
|
183 |
-
plt.title(
|
184 |
-
|
185 |
buf = io.BytesIO()
|
186 |
-
plt.savefig(buf, format=
|
187 |
plt.close()
|
188 |
return base64.b64encode(buf.getvalue()).decode()
|
189 |
|
|
|
190 |
@tool
|
191 |
-
def analyze_categorical_columns(data:
|
192 |
-
"""
|
193 |
-
Analyze categorical columns in the dataset for distribution and frequencies.
|
194 |
-
|
195 |
-
This function examines categorical columns to identify unique values, top categories,
|
196 |
-
and missing value counts, providing insights into the categorical data distribution.
|
197 |
-
|
198 |
-
Args:
|
199 |
-
data (Optional[pd.DataFrame], optional):
|
200 |
-
A pandas DataFrame containing the dataset to analyze. The DataFrame
|
201 |
-
should contain at least one categorical column for meaningful analysis.
|
202 |
-
|
203 |
-
Returns:
|
204 |
-
str: A string containing formatted analysis results for each categorical column,
|
205 |
-
including unique value counts, top categories, and missing value counts.
|
206 |
-
"""
|
207 |
-
# Access dataset from agent if no data provided
|
208 |
if data is None:
|
209 |
data = tool.agent.dataset
|
210 |
-
|
211 |
-
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
212 |
analysis = {}
|
213 |
-
|
214 |
for col in categorical_cols:
|
215 |
analysis[col] = {
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
}
|
220 |
-
|
221 |
return str(analysis)
|
222 |
|
|
|
223 |
@tool
|
224 |
-
def suggest_features(data:
|
225 |
-
"""
|
226 |
-
Suggest potential feature engineering steps based on data characteristics.
|
227 |
-
|
228 |
-
This function analyzes the dataset's structure and statistical properties to
|
229 |
-
recommend possible feature engineering steps that could improve model performance.
|
230 |
-
|
231 |
-
Args:
|
232 |
-
data (Optional[pd.DataFrame], optional):
|
233 |
-
A pandas DataFrame containing the dataset to analyze. The DataFrame
|
234 |
-
can contain both numerical and categorical columns.
|
235 |
-
|
236 |
-
Returns:
|
237 |
-
str: A string containing suggestions for feature engineering based on
|
238 |
-
the characteristics of the input data.
|
239 |
-
"""
|
240 |
-
# Access dataset from agent if no data provided
|
241 |
if data is None:
|
242 |
data = tool.agent.dataset
|
243 |
-
|
244 |
suggestions = []
|
245 |
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
246 |
-
categorical_cols = data.select_dtypes(include=[
|
247 |
-
|
248 |
if len(numeric_cols) >= 2:
|
249 |
suggestions.append("Consider creating interaction terms between numerical features")
|
250 |
-
|
251 |
if len(categorical_cols) > 0:
|
252 |
suggestions.append("Consider one-hot encoding for categorical variables")
|
253 |
-
|
254 |
for col in numeric_cols:
|
255 |
if data[col].skew() > 1 or data[col].skew() < -1:
|
256 |
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
257 |
-
|
258 |
-
return '\n'.join(suggestions)
|
259 |
|
260 |
-
|
261 |
-
#
|
262 |
-
#
|
|
|
263 |
def export_report(content: str, filename: str):
|
264 |
-
"""
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
a download button for users to obtain the report.
|
269 |
-
|
270 |
-
Args:
|
271 |
-
content (str): The markdown content to be included in the PDF report.
|
272 |
-
filename (str): The desired name for the exported PDF file.
|
273 |
-
|
274 |
-
Returns:
|
275 |
-
None
|
276 |
-
"""
|
277 |
-
# Save content to a temporary HTML file
|
278 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as tmp_file:
|
279 |
-
tmp_file.write(content.encode('utf-8'))
|
280 |
-
tmp_file_path = tmp_file.name
|
281 |
-
|
282 |
-
# Define output PDF path
|
283 |
pdf_path = f"{filename}.pdf"
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
data=PDFbyte,
|
296 |
-
file_name=pdf_path,
|
297 |
-
mime='application/octet-stream')
|
298 |
-
except Exception as e:
|
299 |
-
st.error(f"⚠️ Error exporting report: {str(e)}")
|
300 |
-
finally:
|
301 |
-
os.remove(tmp_file_path)
|
302 |
-
if os.path.exists(pdf_path):
|
303 |
-
os.remove(pdf_path)
|
304 |
|
305 |
-
#
|
306 |
-
#
|
307 |
-
#
|
308 |
def main():
|
309 |
-
st.
|
310 |
-
st.title("📊 **Business Intelligence Assistant**")
|
311 |
st.write("Upload your dataset and get automated analysis with natural language interaction.")
|
312 |
-
|
313 |
-
# Initialize session state
|
314 |
-
if 'data' not in st.session_state:
|
315 |
-
st.session_state['data'] = None
|
316 |
-
if 'agent' not in st.session_state:
|
317 |
-
st.session_state['agent'] = None
|
318 |
-
if 'report_content' not in st.session_state:
|
319 |
-
st.session_state['report_content'] = ""
|
320 |
-
|
321 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
322 |
-
|
323 |
-
try:
|
324 |
-
if uploaded_file is not None:
|
325 |
-
with st.spinner('🔄 Loading and processing your data...'):
|
326 |
-
# Load the dataset
|
327 |
-
data = pd.read_csv(uploaded_file)
|
328 |
-
st.session_state['data'] = data
|
329 |
-
|
330 |
-
# Initialize the agent with the dataset
|
331 |
-
st.session_state['agent'] = DataAnalysisAgent(
|
332 |
-
dataset=data,
|
333 |
-
tools=[analyze_basic_stats, generate_correlation_matrix,
|
334 |
-
analyze_categorical_columns, suggest_features],
|
335 |
-
model=GroqLLM(),
|
336 |
-
additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn"]
|
337 |
-
)
|
338 |
-
|
339 |
-
st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
|
340 |
-
st.subheader("🔍 **Data Preview**")
|
341 |
-
st.dataframe(data.head())
|
342 |
-
|
343 |
-
if st.session_state['data'] is not None:
|
344 |
-
analysis_type = st.selectbox(
|
345 |
-
"Choose analysis type",
|
346 |
-
["Basic Statistics", "Correlation Analysis", "Categorical Analysis",
|
347 |
-
"Feature Engineering", "Custom Question"]
|
348 |
-
)
|
349 |
-
|
350 |
-
if analysis_type == "Basic Statistics":
|
351 |
-
with st.spinner('Analyzing basic statistics...'):
|
352 |
-
result = st.session_state['agent'].run(
|
353 |
-
"Use the analyze_basic_stats tool to analyze this dataset and "
|
354 |
-
"provide insights about the numerical distributions."
|
355 |
-
)
|
356 |
-
st.write(result)
|
357 |
-
st.session_state['report_content'] += result + "\n\n"
|
358 |
-
|
359 |
-
elif analysis_type == "Correlation Analysis":
|
360 |
-
with st.spinner('Generating correlation matrix...'):
|
361 |
-
result = st.session_state['agent'].run(
|
362 |
-
"Use the generate_correlation_matrix tool to analyze correlations "
|
363 |
-
"and explain any strong relationships found."
|
364 |
-
)
|
365 |
-
if isinstance(result, str) and 'base64' in result:
|
366 |
-
# Extract base64 string and display the image
|
367 |
-
image_data = f"data:image/png;base64,{result}"
|
368 |
-
st.image(image_data, caption='Correlation Matrix')
|
369 |
-
else:
|
370 |
-
st.write(result)
|
371 |
-
st.session_state['report_content'] += "### Correlation Analysis\n" + result + "\n\n"
|
372 |
-
|
373 |
-
elif analysis_type == "Categorical Analysis":
|
374 |
-
with st.spinner('Analyzing categorical columns...'):
|
375 |
-
result = st.session_state['agent'].run(
|
376 |
-
"Use the analyze_categorical_columns tool to examine the "
|
377 |
-
"categorical variables and explain the distributions."
|
378 |
-
)
|
379 |
-
st.write(result)
|
380 |
-
st.session_state['report_content'] += "### Categorical Analysis\n" + result + "\n\n"
|
381 |
-
|
382 |
-
elif analysis_type == "Feature Engineering":
|
383 |
-
with st.spinner('Generating feature suggestions...'):
|
384 |
-
result = st.session_state['agent'].run(
|
385 |
-
"Use the suggest_features tool to recommend potential "
|
386 |
-
"feature engineering steps for this dataset."
|
387 |
-
)
|
388 |
-
st.write(result)
|
389 |
-
st.session_state['report_content'] += "### Feature Engineering Suggestions\n" + result + "\n\n"
|
390 |
-
|
391 |
-
elif analysis_type == "Custom Question":
|
392 |
-
question = st.text_input("What would you like to know about your data?")
|
393 |
-
if st.button("🔍 Get Answer"):
|
394 |
-
if question:
|
395 |
-
with st.spinner('Analyzing...'):
|
396 |
-
result = st.session_state['agent'].run(question)
|
397 |
-
st.write(result)
|
398 |
-
st.session_state['report_content'] += f"### Custom Question: {question}\n{result}\n\n"
|
399 |
-
else:
|
400 |
-
st.warning("Please enter a question.")
|
401 |
-
|
402 |
-
# Option to Export Report
|
403 |
-
if st.session_state['report_content']:
|
404 |
-
st.markdown("---")
|
405 |
-
if st.button("📤 **Export Analysis Report**"):
|
406 |
-
export_report(st.session_state['report_content'], "Business_Intelligence_Report")
|
407 |
-
st.success("✅ Report exported successfully!")
|
408 |
-
|
409 |
-
except Exception as e:
|
410 |
-
st.error(f"⚠️ An error occurred: {str(e)}")
|
411 |
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
if __name__ == "__main__":
|
416 |
main()
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
from smolagents import CodeAgent, tool
|
5 |
from typing import Union, List, Dict, Optional
|
6 |
import matplotlib.pyplot as plt
|
7 |
import seaborn as sns
|
8 |
+
import base64
|
9 |
import os
|
10 |
from groq import Groq
|
11 |
+
import io
|
12 |
import tempfile
|
13 |
+
import pdfkit
|
|
|
14 |
|
15 |
+
|
16 |
+
# --------------------------------------
|
17 |
+
# LLM Interface
|
18 |
+
# --------------------------------------
|
19 |
class GroqLLM:
|
20 |
+
"""Compatible LLM interface for smolagents CodeAgent."""
|
21 |
+
|
22 |
+
def __init__(self, model_name="llama-3.1-8B-Instant"):
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
24 |
self.model_name = model_name
|
25 |
+
|
26 |
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
27 |
+
"""Make the class callable as required by smolagents."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
try:
|
|
|
29 |
if isinstance(prompt, (dict, list)):
|
30 |
prompt_str = str(prompt)
|
31 |
else:
|
32 |
prompt_str = str(prompt)
|
|
|
|
|
33 |
completion = self.client.chat.completions.create(
|
34 |
model=self.model_name,
|
35 |
+
messages=[{"role": "user", "content": prompt_str}],
|
|
|
|
|
|
|
36 |
temperature=0.7,
|
37 |
max_tokens=1024,
|
38 |
+
stream=False,
|
39 |
)
|
|
|
40 |
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
|
|
41 |
except Exception as e:
|
42 |
+
return f"Error generating response: {str(e)}"
|
43 |
+
|
|
|
44 |
|
45 |
+
# --------------------------------------
|
46 |
+
# Dataset-Aware Agent
|
47 |
+
# --------------------------------------
|
48 |
class DataAnalysisAgent(CodeAgent):
|
49 |
+
"""Extended CodeAgent with dataset awareness."""
|
50 |
+
|
51 |
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
super().__init__(*args, **kwargs)
|
53 |
self._dataset = dataset
|
54 |
+
|
55 |
@property
|
56 |
def dataset(self) -> pd.DataFrame:
|
57 |
"""Access the stored dataset."""
|
58 |
return self._dataset
|
59 |
+
|
60 |
def run(self, prompt: str) -> str:
|
61 |
+
"""Override run method to include dataset context."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
dataset_info = f"""
|
63 |
Dataset Shape: {self.dataset.shape}
|
64 |
Columns: {', '.join(self.dataset.columns)}
|
|
|
74 |
"""
|
75 |
return super().run(enhanced_prompt)
|
76 |
|
|
|
|
|
|
|
77 |
|
78 |
+
# --------------------------------------
|
79 |
+
# Tools
|
80 |
+
# --------------------------------------
|
81 |
@tool
|
82 |
+
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
83 |
+
"""Calculate basic statistical measures for numerical columns."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
if data is None:
|
85 |
data = tool.agent.dataset
|
86 |
+
stats = data.describe().to_markdown()
|
87 |
+
return f"### Basic Statistics\n{stats}"
|
88 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
@tool
|
91 |
+
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
92 |
+
"""Generate a visual correlation matrix for numerical columns."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
if data is None:
|
94 |
data = tool.agent.dataset
|
|
|
95 |
numeric_data = data.select_dtypes(include=[np.number])
|
|
|
96 |
plt.figure(figsize=(10, 8))
|
97 |
+
sns.heatmap(numeric_data.corr(), annot=True, cmap="coolwarm")
|
98 |
+
plt.title("Correlation Matrix")
|
|
|
99 |
buf = io.BytesIO()
|
100 |
+
plt.savefig(buf, format="png")
|
101 |
plt.close()
|
102 |
return base64.b64encode(buf.getvalue()).decode()
|
103 |
|
104 |
+
|
105 |
@tool
|
106 |
+
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
107 |
+
"""Analyze categorical columns in the dataset."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
if data is None:
|
109 |
data = tool.agent.dataset
|
110 |
+
categorical_cols = data.select_dtypes(include=["object", "category"]).columns
|
|
|
111 |
analysis = {}
|
|
|
112 |
for col in categorical_cols:
|
113 |
analysis[col] = {
|
114 |
+
"unique_values": data[col].nunique(),
|
115 |
+
"top_categories": data[col].value_counts().head(5).to_dict(),
|
116 |
+
"missing": data[col].isnull().sum(),
|
117 |
}
|
|
|
118 |
return str(analysis)
|
119 |
|
120 |
+
|
121 |
@tool
|
122 |
+
def suggest_features(data: pd.DataFrame) -> str:
|
123 |
+
"""Suggest potential feature engineering steps."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
if data is None:
|
125 |
data = tool.agent.dataset
|
|
|
126 |
suggestions = []
|
127 |
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
128 |
+
categorical_cols = data.select_dtypes(include=["object", "category"]).columns
|
|
|
129 |
if len(numeric_cols) >= 2:
|
130 |
suggestions.append("Consider creating interaction terms between numerical features")
|
|
|
131 |
if len(categorical_cols) > 0:
|
132 |
suggestions.append("Consider one-hot encoding for categorical variables")
|
|
|
133 |
for col in numeric_cols:
|
134 |
if data[col].skew() > 1 or data[col].skew() < -1:
|
135 |
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
136 |
+
return "\n".join(suggestions)
|
|
|
137 |
|
138 |
+
|
139 |
+
# --------------------------------------
|
140 |
+
# Export Report
|
141 |
+
# --------------------------------------
|
142 |
def export_report(content: str, filename: str):
|
143 |
+
"""Export analysis report as a PDF."""
|
144 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as tmp:
|
145 |
+
tmp.write(content.encode("utf-8"))
|
146 |
+
tmp_path = tmp.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
pdf_path = f"{filename}.pdf"
|
148 |
+
pdfkit.from_file(tmp_path, pdf_path)
|
149 |
+
with open(pdf_path, "rb") as pdf_file:
|
150 |
+
st.download_button(
|
151 |
+
label="Download Report as PDF",
|
152 |
+
data=pdf_file.read(),
|
153 |
+
file_name=pdf_path,
|
154 |
+
mime="application/pdf",
|
155 |
+
)
|
156 |
+
os.remove(tmp_path)
|
157 |
+
os.remove(pdf_path)
|
158 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
# --------------------------------------
|
161 |
+
# Streamlit App
|
162 |
+
# --------------------------------------
|
163 |
def main():
|
164 |
+
st.title("Data Analysis Assistant")
|
|
|
165 |
st.write("Upload your dataset and get automated analysis with natural language interaction.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
if "data" not in st.session_state:
|
168 |
+
st.session_state["data"] = None
|
169 |
+
|
170 |
+
uploaded_file = st.file_uploader("Upload CSV File", type="csv")
|
171 |
+
if uploaded_file:
|
172 |
+
st.session_state["data"] = pd.read_csv(uploaded_file)
|
173 |
+
st.success(f"Loaded dataset with {st.session_state['data'].shape[0]} rows and {st.session_state['data'].shape[1]} columns.")
|
174 |
+
st.dataframe(st.session_state["data"].head())
|
175 |
+
|
176 |
+
agent = DataAnalysisAgent(
|
177 |
+
dataset=st.session_state["data"],
|
178 |
+
tools=[analyze_basic_stats, generate_correlation_matrix, analyze_categorical_columns, suggest_features],
|
179 |
+
model=GroqLLM(),
|
180 |
+
)
|
181 |
+
|
182 |
+
analysis_type = st.selectbox("Choose Analysis Type", ["Basic Statistics", "Correlation Analysis", "Categorical Analysis", "Feature Suggestions"])
|
183 |
+
if analysis_type == "Basic Statistics":
|
184 |
+
st.markdown(agent.run("Analyze basic statistics."))
|
185 |
+
elif analysis_type == "Correlation Analysis":
|
186 |
+
result = agent.run("Generate a correlation matrix.")
|
187 |
+
st.image(f"data:image/png;base64,{result}")
|
188 |
+
elif analysis_type == "Categorical Analysis":
|
189 |
+
st.markdown(agent.run("Analyze categorical columns."))
|
190 |
+
elif analysis_type == "Feature Suggestions":
|
191 |
+
st.markdown(agent.run("Suggest feature engineering ideas."))
|
192 |
+
|
193 |
+
if st.button("Export Report"):
|
194 |
+
export_report(agent.run("Generate full report."), "data_analysis_report")
|
195 |
+
|
196 |
+
|
197 |
if __name__ == "__main__":
|
198 |
main()
|