Spaces:
Sleeping
Sleeping
File size: 15,235 Bytes
c3ab38e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import streamlit as st
import pandas as pd
from typing import Dict, List, Optional, Any
from pydantic import BaseModel, Field
import base64
import io
import matplotlib.pyplot as plt
import seaborn as sns
from abc import ABC, abstractmethod # For abstract base classes
from sklearn.model_selection import train_test_split # Machine learning modules
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller
from langchain.prompts import PromptTemplate
from groq import Groq
import os
import numpy as np
from scipy.stats import ttest_ind, f_oneway
# Initialize Groq Client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# ---------------------- Base Classes and Schemas ---------------------------
class ResearchInput(BaseModel):
"""Base schema for research tool inputs"""
data_key: str = Field(..., description="Session state key containing DataFrame")
columns: Optional[List[str]] = Field(None, description="List of columns to analyze")
class TemporalAnalysisInput(ResearchInput):
"""Schema for temporal analysis"""
time_col: str = Field(..., description="Name of timestamp column")
value_col: str = Field(..., description="Name of value column to analyze")
class HypothesisInput(ResearchInput):
"""Schema for hypothesis testing"""
group_col: str = Field(..., description="Categorical column defining groups")
value_col: str = Field(..., description="Numerical column to compare")
class ModelTrainingInput(ResearchInput):
"""Schema for model training"""
target_col: str = Field(..., description="Name of target column")
class DataAnalyzer(ABC):
"""Abstract base class for data analysis modules"""
@abstractmethod
def invoke(self, **kwargs) -> Dict[str, Any]:
pass
# ---------------------- Concrete Analyzer Implementations ---------------------------
class AdvancedEDA(DataAnalyzer):
"""Comprehensive Exploratory Data Analysis"""
def invoke(self, data_key: str, **kwargs) -> Dict[str, Any]:
try:
data = st.session_state[data_key]
analysis = {
"dimensionality": {
"rows": len(data),
"columns": list(data.columns),
"memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB"
},
"statistical_profile": data.describe(percentiles=[.25, .5, .75]).to_dict(),
"temporal_analysis": {
"date_ranges": {
col: {
"min": data[col].min(),
"max": data[col].max()
} for col in data.select_dtypes(include='datetime').columns
}
},
"data_quality": {
"missing_values": data.isnull().sum().to_dict(),
"duplicates": data.duplicated().sum(),
"cardinality": {
col: data[col].nunique() for col in data.columns
}
}
}
return analysis
except Exception as e:
return {"error": f"EDA Failed: {str(e)}"}
class DistributionVisualizer(DataAnalyzer):
"""Distribution visualizations"""
def invoke(self, data_key: str, columns: List[str], **kwargs) -> str:
try:
data = st.session_state[data_key]
plt.figure(figsize=(12, 6))
for i, col in enumerate(columns, 1):
plt.subplot(1, len(columns), i)
sns.histplot(data[col], kde=True, stat="density")
plt.title(f'Distribution of {col}', fontsize=10)
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
plt.close()
return base64.b64encode(buf.getvalue()).decode()
except Exception as e:
return f"Visualization Error: {str(e)}"
class TemporalAnalyzer(DataAnalyzer):
"""Time series analysis"""
def invoke(self, data_key: str, time_col: str, value_col: str, **kwargs) -> Dict[str, Any]:
try:
data = st.session_state[data_key]
ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col]
decomposition = seasonal_decompose(ts_data, period=365)
plt.figure(figsize=(12, 8))
decomposition.plot()
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
plot_data = base64.b64encode(buf.getvalue()).decode()
return {
"trend_statistics": {
"stationarity": adfuller(ts_data)[1],
"seasonality_strength": max(decomposition.seasonal)
},
"visualization": plot_data
}
except Exception as e:
return {"error": f"Temporal Analysis Failed: {str(e)}"}
class HypothesisTester(DataAnalyzer):
"""Statistical hypothesis testing"""
def invoke(self, data_key: str, group_col: str, value_col: str, **kwargs) -> Dict[str, Any]:
try:
data = st.session_state[data_key]
groups = data[group_col].unique()
if len(groups) < 2:
return {"error": "Insufficient groups for comparison"}
if len(groups) == 2:
group_data = [data[data[group_col] == g][value_col] for g in groups]
stat, p = ttest_ind(*group_data)
test_type = "Independent t-test"
else:
group_data = [data[data[group_col] == g][value_col] for g in groups]
stat, p = f_oneway(*group_data)
test_type = "ANOVA"
return {
"test_type": test_type,
"test_statistic": stat,
"p_value": p,
"effect_size": {
"cohens_d": abs(group_data[0].mean() - group_data[1].mean())/np.sqrt(
(group_data[0].var() + group_data[1].var())/2
) if len(groups) == 2 else None
},
"interpretation": self.interpret_p_value(p)
}
except Exception as e:
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
def interpret_p_value(self, p: float) -> str:
if p < 0.001: return "Very strong evidence against H0"
elif p < 0.01: return "Strong evidence against H0"
elif p < 0.05: return "Evidence against H0"
elif p < 0.1: return "Weak evidence against H0"
else: return "No significant evidence against H0"
class LogisticRegressionTrainer(DataAnalyzer):
"""Logistic Regression Model Trainer"""
def invoke(self, data_key: str, target_col: str, columns: List[str], **kwargs) -> Dict[str, Any]:
try:
data = st.session_state[data_key]
X = data[columns]
y = data[target_col]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return {
"model_type": "Logistic Regression",
"accuracy": accuracy,
"model_params": model.get_params()
}
except Exception as e:
return {"error": f"Logistic Regression Model Error: {str(e)}"}
# ---------------------- Groq Research Agent ---------------------------
class GroqResearcher:
"""Advanced AI Research Engine using Groq"""
def __init__(self, model_name="mixtral-8x7b-32768"):
self.model_name = model_name
self.system_template = """You are a senior data scientist at a research institution.
Analyze this dataset with rigorous statistical methods and provide academic-quality insights:
{dataset_info}
User Question: {query}
Required Format:
- Executive Summary (1 paragraph)
- Methodology (bullet points)
- Key Findings (numbered list)
- Limitations
- Recommended Next Steps"""
def research(self, query: str, data: pd.DataFrame) -> str:
"""Conduct academic-level analysis using Groq"""
try:
dataset_info = f"""
Dataset Dimensions: {data.shape}
Variables: {', '.join(data.columns)}
Temporal Coverage: {data.select_dtypes(include='datetime').columns.tolist()}
Missing Values: {data.isnull().sum().to_dict()}
"""
prompt = PromptTemplate.from_template(self.system_template).format(
dataset_info=dataset_info,
query=query
)
completion = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a research AI assistant"},
{"role": "user", "content": prompt}
],
model=self.model_name,
temperature=0.2,
max_tokens=4096,
stream=False
)
return completion.choices[0].message.content
except Exception as e:
return f"Research Error: {str(e)}"
# ---------------------- Main Streamlit Application ---------------------------
def main():
st.set_page_config(page_title="AI Data Analysis Lab", layout="wide")
st.title("🧪 Advanced AI Data Analysis Laboratory")
# Session State
if 'data' not in st.session_state:
st.session_state.data = None
if 'researcher' not in st.session_state:
st.session_state.researcher = GroqResearcher()
# Data Upload
with st.sidebar:
st.header("🔬 Data Management")
uploaded_file = st.file_uploader("Upload research dataset", type=["csv", "parquet"])
if uploaded_file:
with st.spinner("Initializing dataset..."):
try:
st.session_state.data = pd.read_csv(uploaded_file)
st.success(f"Loaded {len(st.session_state.data):,} research observations")
except Exception as e:
st.error(f"Error loading dataset: {e}")
if st.session_state.data is not None:
col1, col2 = st.columns([1, 3])
with col1:
st.subheader("Dataset Metadata")
st.json({
"Variables": list(st.session_state.data.columns),
"Time Range": {
col: {
"min": st.session_state.data[col].min(),
"max": st.session_state.data[col].max()
} for col in st.session_state.data.select_dtypes(include='datetime').columns
},
"Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
})
with col2:
analysis_tab, research_tab = st.tabs(["Automated Analysis", "Custom Research"])
with analysis_tab:
analysis_type = st.selectbox("Select Analysis Mode", [
"Exploratory Data Analysis",
"Temporal Pattern Analysis",
"Comparative Statistics",
"Distribution Analysis",
"Train Logistic Regression Model"
])
if analysis_type == "Exploratory Data Analysis":
analyzer = AdvancedEDA()
eda_result = analyzer.invoke(data_key="data")
st.subheader("Data Quality Report")
st.json(eda_result)
elif analysis_type == "Temporal Pattern Analysis":
time_col = st.selectbox("Temporal Variable",
st.session_state.data.select_dtypes(include='datetime').columns)
value_col = st.selectbox("Analysis Variable",
st.session_state.data.select_dtypes(include=np.number).columns)
if time_col and value_col:
analyzer = TemporalAnalyzer()
result = analyzer.invoke(data_key="data", time_col=time_col, value_col=value_col)
if "visualization" in result:
st.image(f"data:image/png;base64,{result['visualization']}")
st.json(result)
elif analysis_type == "Comparative Statistics":
group_col = st.selectbox("Grouping Variable",
st.session_state.data.select_dtypes(include='category').columns)
value_col = st.selectbox("Metric Variable",
st.session_state.data.select_dtypes(include=np.number).columns)
if group_col and value_col:
analyzer = HypothesisTester()
result = analyzer.invoke(data_key="data", group_col=group_col, value_col=value_col)
st.subheader("Statistical Test Results")
st.json(result)
elif analysis_type == "Distribution Analysis":
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
selected_cols = st.multiselect("Select Variables", num_cols)
if selected_cols:
analyzer = DistributionVisualizer()
img_data = analyzer.invoke(data_key="data", columns=selected_cols)
st.image(f"data:image/png;base64,{img_data}")
elif analysis_type == "Train Logistic Regression Model":
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
target_col = st.selectbox("Select Target Variable",
st.session_state.data.columns.tolist())
selected_cols = st.multiselect("Select Feature Variables", num_cols)
if selected_cols and target_col:
analyzer = LogisticRegressionTrainer()
result = analyzer.invoke(data_key="data", target_col=target_col, columns=selected_cols)
st.subheader("Logistic Regression Model Results")
st.json(result)
with research_tab:
research_query = st.text_area("Enter Research Question:", height=150,
placeholder="E.g., 'What factors are most predictive of X outcome?'")
if st.button("Execute Research"):
with st.spinner("Conducting rigorous analysis..."):
result = st.session_state.researcher.research(
research_query, st.session_state.data
)
st.markdown("## Research Findings")
st.markdown(result)
if __name__ == "__main__":
main() |