Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,8 @@ import base64
|
|
6 |
import io
|
7 |
import matplotlib.pyplot as plt
|
8 |
import seaborn as sns
|
9 |
-
from abc import ABC, abstractmethod
|
10 |
-
from sklearn.model_selection import train_test_split
|
11 |
from sklearn.linear_model import LogisticRegression
|
12 |
from sklearn.metrics import accuracy_score
|
13 |
from statsmodels.tsa.seasonal import seasonal_decompose
|
@@ -17,177 +17,216 @@ from groq import Groq
|
|
17 |
import os
|
18 |
import numpy as np
|
19 |
from scipy.stats import ttest_ind, f_oneway
|
|
|
20 |
|
21 |
# Initialize Groq Client
|
22 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# ---------------------- Base Classes and Schemas ---------------------------
|
26 |
-
class ResearchInput(BaseModel):
|
27 |
-
"""Base schema for research tool inputs"""
|
28 |
-
data_key: str = Field(..., description="Session state key containing DataFrame")
|
29 |
-
columns: Optional[List[str]] = Field(None, description="List of columns to analyze")
|
30 |
|
31 |
-
class
|
32 |
-
"""
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
class
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
class
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
@abstractmethod
|
48 |
-
def
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
plt.savefig(buf, format='png')
|
119 |
-
plt.close()
|
120 |
-
plot_data = base64.b64encode(buf.getvalue()).decode()
|
121 |
-
|
122 |
-
return {
|
123 |
-
"trend_statistics": {
|
124 |
-
"stationarity": adfuller(ts_data)[1],
|
125 |
-
"seasonality_strength": max(decomposition.seasonal)
|
126 |
-
},
|
127 |
-
"visualization": plot_data
|
128 |
-
}
|
129 |
-
except Exception as e:
|
130 |
-
return {"error": f"Temporal Analysis Failed: {str(e)}"}
|
131 |
-
|
132 |
-
class HypothesisTester(DataAnalyzer):
|
133 |
-
"""Statistical hypothesis testing"""
|
134 |
-
def invoke(self, data_key: str, group_col: str, value_col: str, **kwargs) -> Dict[str, Any]:
|
135 |
-
try:
|
136 |
-
data = st.session_state[data_key]
|
137 |
-
groups = data[group_col].unique()
|
138 |
-
|
139 |
-
if len(groups) < 2:
|
140 |
-
return {"error": "Insufficient groups for comparison"}
|
141 |
-
|
142 |
-
if len(groups) == 2:
|
143 |
-
group_data = [data[data[group_col] == g][value_col] for g in groups]
|
144 |
-
stat, p = ttest_ind(*group_data)
|
145 |
-
test_type = "Independent t-test"
|
146 |
-
else:
|
147 |
-
group_data = [data[data[group_col] == g][value_col] for g in groups]
|
148 |
-
stat, p = f_oneway(*group_data)
|
149 |
-
test_type = "ANOVA"
|
150 |
-
|
151 |
-
return {
|
152 |
-
"test_type": test_type,
|
153 |
-
"test_statistic": stat,
|
154 |
-
"p_value": p,
|
155 |
-
"effect_size": {
|
156 |
-
"cohens_d": abs(group_data[0].mean() - group_data[1].mean())/np.sqrt(
|
157 |
-
(group_data[0].var() + group_data[1].var())/2
|
158 |
-
) if len(groups) == 2 else None
|
159 |
-
},
|
160 |
-
"interpretation": self.interpret_p_value(p)
|
161 |
-
}
|
162 |
-
except Exception as e:
|
163 |
-
return {"error": f"Hypothesis Testing Failed: {str(e)}"}
|
164 |
-
|
165 |
-
def interpret_p_value(self, p: float) -> str:
|
166 |
-
if p < 0.001: return "Very strong evidence against H0"
|
167 |
-
elif p < 0.01: return "Strong evidence against H0"
|
168 |
-
elif p < 0.05: return "Evidence against H0"
|
169 |
-
elif p < 0.1: return "Weak evidence against H0"
|
170 |
-
else: return "No significant evidence against H0"
|
171 |
-
|
172 |
-
class LogisticRegressionTrainer(DataAnalyzer):
|
173 |
-
"""Logistic Regression Model Trainer"""
|
174 |
-
def invoke(self, data_key: str, target_col: str, columns: List[str], **kwargs) -> Dict[str, Any]:
|
175 |
-
try:
|
176 |
-
data = st.session_state[data_key]
|
177 |
-
X = data[columns]
|
178 |
-
y = data[target_col]
|
179 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
180 |
-
model = LogisticRegression(max_iter=1000)
|
181 |
-
model.fit(X_train, y_train)
|
182 |
-
y_pred = model.predict(X_test)
|
183 |
-
accuracy = accuracy_score(y_test, y_pred)
|
184 |
-
return {
|
185 |
-
"model_type": "Logistic Regression",
|
186 |
-
"accuracy": accuracy,
|
187 |
-
"model_params": model.get_params()
|
188 |
-
}
|
189 |
-
except Exception as e:
|
190 |
-
return {"error": f"Logistic Regression Model Error: {str(e)}"}
|
191 |
|
192 |
# ---------------------- Groq Research Agent ---------------------------
|
193 |
|
@@ -238,117 +277,262 @@ class GroqResearcher:
|
|
238 |
|
239 |
except Exception as e:
|
240 |
return f"Research Error: {str(e)}"
|
|
|
241 |
# ---------------------- Main Streamlit Application ---------------------------
|
242 |
def main():
|
243 |
-
st.set_page_config(page_title="AI
|
244 |
-
st.title("
|
245 |
|
246 |
# Session State
|
247 |
if 'data' not in st.session_state:
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
if 'researcher' not in st.session_state:
|
250 |
st.session_state.researcher = GroqResearcher()
|
|
|
251 |
|
252 |
-
# Data
|
253 |
with st.sidebar:
|
254 |
-
st.header("
|
255 |
-
|
256 |
-
if
|
257 |
-
|
|
|
|
|
|
|
258 |
try:
|
259 |
-
|
260 |
-
st.
|
|
|
261 |
except Exception as e:
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
col1, col2 = st.columns([1, 3])
|
|
|
267 |
with col1:
|
268 |
st.subheader("Dataset Metadata")
|
269 |
-
st.json({
|
270 |
-
"Variables": list(st.session_state.data.columns),
|
271 |
-
"Time Range": {
|
272 |
-
col: {
|
273 |
-
"min": st.session_state.data[col].min(),
|
274 |
-
"max": st.session_state.data[col].max()
|
275 |
-
} for col in st.session_state.data.select_dtypes(include='datetime').columns
|
276 |
-
},
|
277 |
-
"Size": f"{st.session_state.data.memory_usage().sum() / 1e6:.2f} MB"
|
278 |
-
})
|
279 |
-
|
280 |
-
with col2:
|
281 |
-
analysis_tab, research_tab = st.tabs(["Automated Analysis", "Custom Research"])
|
282 |
-
with analysis_tab:
|
283 |
-
analysis_type = st.selectbox("Select Analysis Mode", [
|
284 |
-
"Exploratory Data Analysis",
|
285 |
-
"Temporal Pattern Analysis",
|
286 |
-
"Comparative Statistics",
|
287 |
-
"Distribution Analysis",
|
288 |
-
"Train Logistic Regression Model"
|
289 |
-
])
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
eda_result = analyzer.invoke(data_key="data")
|
294 |
-
st.subheader("Data Quality Report")
|
295 |
-
st.json(eda_result)
|
296 |
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
st.json(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
st.image(f"data:image/png;base64,{img_data}")
|
329 |
-
|
330 |
-
elif analysis_type == "Train Logistic Regression Model":
|
331 |
-
num_cols = st.session_state.data.select_dtypes(include=np.number).columns.tolist()
|
332 |
-
target_col = st.selectbox("Select Target Variable",
|
333 |
-
st.session_state.data.columns.tolist())
|
334 |
-
selected_cols = st.multiselect("Select Feature Variables", num_cols)
|
335 |
-
if selected_cols and target_col:
|
336 |
-
analyzer = LogisticRegressionTrainer()
|
337 |
-
result = analyzer.invoke(data_key="data", target_col=target_col, columns=selected_cols)
|
338 |
-
st.subheader("Logistic Regression Model Results")
|
339 |
-
st.json(result)
|
340 |
-
|
341 |
-
with research_tab:
|
342 |
-
research_query = st.text_area("Enter Research Question:", height=150,
|
343 |
-
placeholder="E.g., 'What factors are most predictive of X outcome?'")
|
344 |
-
|
345 |
-
if st.button("Execute Research"):
|
346 |
with st.spinner("Conducting rigorous analysis..."):
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
352 |
|
353 |
if __name__ == "__main__":
|
354 |
main()
|
|
|
6 |
import io
|
7 |
import matplotlib.pyplot as plt
|
8 |
import seaborn as sns
|
9 |
+
from abc import ABC, abstractmethod
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
from sklearn.linear_model import LogisticRegression
|
12 |
from sklearn.metrics import accuracy_score
|
13 |
from statsmodels.tsa.seasonal import seasonal_decompose
|
|
|
17 |
import os
|
18 |
import numpy as np
|
19 |
from scipy.stats import ttest_ind, f_oneway
|
20 |
+
import json
|
21 |
|
22 |
# Initialize Groq Client
|
23 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
24 |
|
25 |
+
# ---------------------- Data Acquisition Layer ---------------------------
|
26 |
+
class DataSource(ABC):
|
27 |
+
"""Base class for data sources."""
|
28 |
+
@abstractmethod
|
29 |
+
def connect(self) -> None:
|
30 |
+
"""Connect to the data source."""
|
31 |
+
pass
|
32 |
+
|
33 |
+
@abstractmethod
|
34 |
+
def fetch_data(self, query: str, **kwargs) -> pd.DataFrame:
|
35 |
+
"""Fetch the data based on a specific query."""
|
36 |
+
pass
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
class CSVDataSource(DataSource):
|
40 |
+
"""Data source for CSV files."""
|
41 |
+
def __init__(self, file_path: str):
|
42 |
+
self.file_path = file_path
|
43 |
+
self.data: Optional[pd.DataFrame] = None
|
44 |
+
|
45 |
+
def connect(self):
|
46 |
+
self.data = pd.read_csv(self.file_path)
|
47 |
+
|
48 |
+
def fetch_data(self, query: str = None, **kwargs) -> pd.DataFrame:
|
49 |
+
if self.data is None:
|
50 |
+
raise Exception("No connection is made, call connect()")
|
51 |
+
return self.data
|
52 |
+
|
53 |
+
class DatabaseSource(DataSource):
|
54 |
+
def __init__(self, connection_string: str, database_type: str):
|
55 |
+
self.connection_string = connection_string
|
56 |
+
self.database_type = database_type
|
57 |
+
self.connection = None
|
58 |
+
|
59 |
+
def connect(self):
|
60 |
+
if self.database_type.lower() == "sql":
|
61 |
+
#Placeholder for the actual database connection
|
62 |
+
self.connection = "Connected to SQL Database"
|
63 |
+
else:
|
64 |
+
raise Exception(f"Database type '{self.database_type}' is not supported")
|
65 |
+
|
66 |
+
def fetch_data(self, query: str, **kwargs) -> pd.DataFrame:
|
67 |
+
if self.connection is None:
|
68 |
+
raise Exception("No connection is made, call connect()")
|
69 |
+
#Placeholder for the data fetching
|
70 |
+
return pd.DataFrame({"result":[f"Fetched data based on query: {query}"]})
|
71 |
+
|
72 |
|
73 |
+
class DataIngestion:
|
74 |
+
def __init__(self):
|
75 |
+
self.sources : Dict[str, DataSource] = {}
|
76 |
+
|
77 |
+
def add_source(self, source_name: str, source: DataSource):
|
78 |
+
self.sources[source_name] = source
|
79 |
+
|
80 |
+
def ingest_data(self, source_name: str, query: str = None, **kwargs) -> pd.DataFrame:
|
81 |
+
if source_name not in self.sources:
|
82 |
+
raise Exception(f"Source '{source_name}' not found")
|
83 |
+
source = self.sources[source_name]
|
84 |
+
source.connect()
|
85 |
+
return source.fetch_data(query, **kwargs)
|
86 |
+
|
87 |
+
class DataModel(BaseModel):
|
88 |
+
name : str
|
89 |
+
kpis : List[str] = Field(default_factory=list)
|
90 |
+
dimensions : List[str] = Field(default_factory=list)
|
91 |
+
custom_calculations : Optional[Dict[str, str]] = None
|
92 |
+
relations: Optional[Dict[str,str]] = None #Example {table1: table2}
|
93 |
+
|
94 |
+
def to_json(self):
|
95 |
+
return json.dumps(self.dict())
|
96 |
+
|
97 |
+
@staticmethod
|
98 |
+
def from_json(json_str):
|
99 |
+
return DataModel(**json.loads(json_str))
|
100 |
+
|
101 |
+
class DataModelling():
|
102 |
+
def __init__(self):
|
103 |
+
self.models : Dict[str, DataModel] = {}
|
104 |
+
|
105 |
+
def add_model(self, model:DataModel):
|
106 |
+
self.models[model.name] = model
|
107 |
+
|
108 |
+
def get_model(self, model_name: str) -> DataModel:
|
109 |
+
if model_name not in self.models:
|
110 |
+
raise Exception(f"Model '{model_name}' not found")
|
111 |
+
return self.models[model_name]
|
112 |
+
# ---------------------- Business Logic Layer ---------------------------
|
113 |
+
class BusinessRule(BaseModel):
|
114 |
+
name: str
|
115 |
+
condition: str
|
116 |
+
action: str
|
117 |
|
118 |
+
class BusinessRulesEngine():
|
119 |
+
def __init__(self):
|
120 |
+
self.rules: Dict[str, BusinessRule] = {}
|
121 |
+
|
122 |
+
def add_rule(self, rule: BusinessRule):
|
123 |
+
self.rules[rule.name] = rule
|
124 |
|
125 |
+
def execute_rules(self, data: pd.DataFrame):
|
126 |
+
results = {}
|
127 |
+
for rule_name, rule in self.rules.items():
|
128 |
+
try:
|
129 |
+
if eval(rule.condition, {}, {"df":data}):
|
130 |
+
results[rule_name] = {"rule_matched": True, "action": rule.action}
|
131 |
+
else:
|
132 |
+
results[rule_name] = {"rule_matched": False, "action": None}
|
133 |
+
except Exception as e:
|
134 |
+
results[rule_name] = {"rule_matched": False, "error": str(e)}
|
135 |
+
return results
|
136 |
+
|
137 |
+
class KPI(BaseModel):
|
138 |
+
name: str
|
139 |
+
calculation: str
|
140 |
+
threshold: Optional[float] = None
|
141 |
+
|
142 |
+
class KPIMonitoring():
|
143 |
+
def __init__(self):
|
144 |
+
self.kpis : Dict[str, KPI] = {}
|
145 |
+
|
146 |
+
def add_kpi(self, kpi:KPI):
|
147 |
+
self.kpis[kpi.name] = kpi
|
148 |
+
|
149 |
+
def calculate_kpis(self, data: pd.DataFrame):
|
150 |
+
results = {}
|
151 |
+
for kpi_name, kpi in self.kpis.items():
|
152 |
+
try:
|
153 |
+
results[kpi_name] = eval(kpi.calculation, {}, {"df": data})
|
154 |
+
except Exception as e:
|
155 |
+
results[kpi_name] = {"error": str(e)}
|
156 |
+
return results
|
157 |
+
|
158 |
+
class ForecastingEngine(ABC):
|
159 |
@abstractmethod
|
160 |
+
def predict(self, data: pd.DataFrame, **kwargs) -> pd.DataFrame:
|
161 |
+
pass
|
162 |
|
163 |
+
class SimpleForecasting(ForecastingEngine):
|
164 |
+
def predict(self, data: pd.DataFrame, period: int = 7, **kwargs) -> pd.DataFrame:
|
165 |
+
#Placeholder for actual forecasting
|
166 |
+
return pd.DataFrame({"forecast":[f"Forecast for the next {period} days"]})
|
167 |
+
# ---------------------- Insights and Reporting Layer ---------------------------
|
168 |
+
class AutomatedInsights():
|
169 |
+
def __init__(self):
|
170 |
+
self.analyses : Dict[str, DataAnalyzer] = {
|
171 |
+
"EDA": AdvancedEDA(),
|
172 |
+
"temporal": TemporalAnalyzer(),
|
173 |
+
"distribution": DistributionVisualizer(),
|
174 |
+
"hypothesis": HypothesisTester(),
|
175 |
+
"model": LogisticRegressionTrainer()
|
176 |
+
}
|
177 |
+
|
178 |
+
def generate_insights(self, data: pd.DataFrame, analysis_names: List[str], **kwargs):
|
179 |
+
results = {}
|
180 |
+
for name in analysis_names:
|
181 |
+
if name in self.analyses:
|
182 |
+
analyzer = self.analyses[name]
|
183 |
+
results[name] = analyzer.invoke(data=data, **kwargs)
|
184 |
+
else:
|
185 |
+
results[name] = {"error": "Analysis not found"}
|
186 |
+
return results
|
187 |
+
|
188 |
+
class Dashboard():
|
189 |
+
def __init__(self):
|
190 |
+
self.layout: Dict[str,str] = {}
|
191 |
+
|
192 |
+
def add_visualisation(self, vis_name: str, vis_type: str):
|
193 |
+
self.layout[vis_name] = vis_type
|
194 |
+
|
195 |
+
def display_dashboard(self, data_dict: Dict[str,pd.DataFrame]):
|
196 |
+
st.header("Dashboard")
|
197 |
+
for vis_name, vis_type in self.layout.items():
|
198 |
+
st.subheader(vis_name)
|
199 |
+
if vis_type == "table":
|
200 |
+
if vis_name in data_dict:
|
201 |
+
st.table(data_dict[vis_name])
|
202 |
+
else:
|
203 |
+
st.write("Data Not Found")
|
204 |
+
elif vis_type == "plot":
|
205 |
+
if vis_name in data_dict:
|
206 |
+
df = data_dict[vis_name]
|
207 |
+
if len(df.columns) > 1:
|
208 |
+
fig = plt.figure()
|
209 |
+
sns.lineplot(data=df)
|
210 |
+
st.pyplot(fig)
|
211 |
+
else:
|
212 |
+
st.write("Please have more than 1 column")
|
213 |
+
else:
|
214 |
+
st.write("Data not found")
|
215 |
+
class AutomatedReports():
|
216 |
+
def __init__(self):
|
217 |
+
self.report_definition: Dict[str,str] = {}
|
218 |
+
|
219 |
+
def create_report_definition(self, report_name: str, definition: str):
|
220 |
+
self.report_definition[report_name] = definition
|
221 |
+
|
222 |
+
def generate_report(self, report_name: str, data:Dict[str, pd.DataFrame]):
|
223 |
+
if report_name not in self.report_definition:
|
224 |
+
return {"error":"Report name not found"}
|
225 |
+
st.header(f"Report : {report_name}")
|
226 |
+
st.write(f"Report Definition: {self.report_definition[report_name]}")
|
227 |
+
for df_name, df in data.items():
|
228 |
+
st.subheader(f"Data: {df_name}")
|
229 |
+
st.table(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
# ---------------------- Groq Research Agent ---------------------------
|
232 |
|
|
|
277 |
|
278 |
except Exception as e:
|
279 |
return f"Research Error: {str(e)}"
|
280 |
+
|
281 |
# ---------------------- Main Streamlit Application ---------------------------
|
282 |
def main():
|
283 |
+
st.set_page_config(page_title="AI BI Automation Platform", layout="wide")
|
284 |
+
st.title("🚀 AI-Powered Business Intelligence Automation Platform")
|
285 |
|
286 |
# Session State
|
287 |
if 'data' not in st.session_state:
|
288 |
+
st.session_state.data = {} # store pd.DataFrame under a name
|
289 |
+
if 'data_ingestion' not in st.session_state:
|
290 |
+
st.session_state.data_ingestion = DataIngestion()
|
291 |
+
if 'data_modelling' not in st.session_state:
|
292 |
+
st.session_state.data_modelling = DataModelling()
|
293 |
+
if 'business_rules' not in st.session_state:
|
294 |
+
st.session_state.business_rules = BusinessRulesEngine()
|
295 |
+
if 'kpi_monitoring' not in st.session_state:
|
296 |
+
st.session_state.kpi_monitoring = KPIMonitoring()
|
297 |
+
if 'forecasting_engine' not in st.session_state:
|
298 |
+
st.session_state.forecasting_engine = SimpleForecasting()
|
299 |
+
if 'automated_insights' not in st.session_state:
|
300 |
+
st.session_state.automated_insights = AutomatedInsights()
|
301 |
+
if 'dashboard' not in st.session_state:
|
302 |
+
st.session_state.dashboard = Dashboard()
|
303 |
+
if 'automated_reports' not in st.session_state:
|
304 |
+
st.session_state.automated_reports = AutomatedReports()
|
305 |
if 'researcher' not in st.session_state:
|
306 |
st.session_state.researcher = GroqResearcher()
|
307 |
+
|
308 |
|
309 |
+
# Sidebar for Data Management
|
310 |
with st.sidebar:
|
311 |
+
st.header("⚙️ Data Management")
|
312 |
+
data_source_selection = st.selectbox("Select Data Source Type",["CSV","SQL Database"])
|
313 |
+
if data_source_selection == "CSV":
|
314 |
+
uploaded_file = st.file_uploader("Upload research dataset (CSV)", type=["csv"])
|
315 |
+
if uploaded_file:
|
316 |
+
source_name = st.text_input("Data Source Name")
|
317 |
+
if source_name:
|
318 |
try:
|
319 |
+
csv_source = CSVDataSource(file_path=uploaded_file)
|
320 |
+
st.session_state.data_ingestion.add_source(source_name,csv_source)
|
321 |
+
st.success(f"Uploaded {uploaded_file.name}")
|
322 |
except Exception as e:
|
323 |
+
st.error(f"Error loading dataset: {e}")
|
324 |
+
elif data_source_selection == "SQL Database":
|
325 |
+
conn_str = st.text_input("Enter connection string for SQL DB")
|
326 |
+
if conn_str:
|
327 |
+
source_name = st.text_input("Data Source Name")
|
328 |
+
if source_name:
|
329 |
+
try:
|
330 |
+
sql_source = DatabaseSource(connection_string=conn_str, database_type="sql")
|
331 |
+
st.session_state.data_ingestion.add_source(source_name, sql_source)
|
332 |
+
st.success(f"Added SQL DB Source {source_name}")
|
333 |
+
except Exception as e:
|
334 |
+
st.error(f"Error loading database source {e}")
|
335 |
|
336 |
|
337 |
+
if st.button("Ingest Data"):
|
338 |
+
if st.session_state.data_ingestion.sources:
|
339 |
+
source_name_to_fetch = st.selectbox("Select Data Source to Ingest", list(st.session_state.data_ingestion.sources.keys()))
|
340 |
+
query = st.text_area("Optional Query to Fetch data")
|
341 |
+
if source_name_to_fetch:
|
342 |
+
with st.spinner("Ingesting data..."):
|
343 |
+
try:
|
344 |
+
data = st.session_state.data_ingestion.ingest_data(source_name_to_fetch, query)
|
345 |
+
st.session_state.data[source_name_to_fetch] = data
|
346 |
+
st.success(f"Ingested data from {source_name_to_fetch}")
|
347 |
+
except Exception as e:
|
348 |
+
st.error(f"Ingestion failed: {e}")
|
349 |
+
else:
|
350 |
+
st.error("No data source added, please add data source")
|
351 |
+
|
352 |
+
if st.session_state.data:
|
353 |
col1, col2 = st.columns([1, 3])
|
354 |
+
|
355 |
with col1:
|
356 |
st.subheader("Dataset Metadata")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
data_source_keys = list(st.session_state.data.keys())
|
359 |
+
selected_data_key = st.selectbox("Select Dataset", data_source_keys)
|
|
|
|
|
|
|
360 |
|
361 |
+
if selected_data_key:
|
362 |
+
data = st.session_state.data[selected_data_key]
|
363 |
+
st.json({
|
364 |
+
"Variables": list(data.columns),
|
365 |
+
"Time Range": {
|
366 |
+
col: {
|
367 |
+
"min": data[col].min(),
|
368 |
+
"max": data[col].max()
|
369 |
+
} for col in data.select_dtypes(include='datetime').columns
|
370 |
+
},
|
371 |
+
"Size": f"{data.memory_usage().sum() / 1e6:.2f} MB"
|
372 |
+
})
|
373 |
+
with col2:
|
374 |
+
analysis_tab, business_logic_tab, insights_tab, reports_tab, custom_research_tab = st.tabs([
|
375 |
+
"Data Analysis",
|
376 |
+
"Business Logic",
|
377 |
+
"Insights",
|
378 |
+
"Reports",
|
379 |
+
"Custom Research"
|
380 |
+
])
|
381 |
+
|
382 |
+
with analysis_tab:
|
383 |
+
if selected_data_key:
|
384 |
+
analysis_type = st.selectbox("Select Analysis Mode", [
|
385 |
+
"Exploratory Data Analysis",
|
386 |
+
"Temporal Pattern Analysis",
|
387 |
+
"Comparative Statistics",
|
388 |
+
"Distribution Analysis",
|
389 |
+
"Train Logistic Regression Model"
|
390 |
+
])
|
391 |
+
data = st.session_state.data[selected_data_key]
|
392 |
+
if analysis_type == "Exploratory Data Analysis":
|
393 |
+
analyzer = AdvancedEDA()
|
394 |
+
eda_result = analyzer.invoke(data=data)
|
395 |
+
st.subheader("Data Quality Report")
|
396 |
+
st.json(eda_result)
|
397 |
+
|
398 |
+
elif analysis_type == "Temporal Pattern Analysis":
|
399 |
+
time_col = st.selectbox("Temporal Variable",
|
400 |
+
data.select_dtypes(include='datetime').columns)
|
401 |
+
value_col = st.selectbox("Analysis Variable",
|
402 |
+
data.select_dtypes(include=np.number).columns)
|
403 |
+
|
404 |
+
if time_col and value_col:
|
405 |
+
analyzer = TemporalAnalyzer()
|
406 |
+
result = analyzer.invoke(data=data, time_col=time_col, value_col=value_col)
|
407 |
+
if "visualization" in result:
|
408 |
+
st.image(f"data:image/png;base64,{result['visualization']}")
|
409 |
+
st.json(result)
|
410 |
+
|
411 |
+
elif analysis_type == "Comparative Statistics":
|
412 |
+
group_col = st.selectbox("Grouping Variable",
|
413 |
+
data.select_dtypes(include='category').columns)
|
414 |
+
value_col = st.selectbox("Metric Variable",
|
415 |
+
data.select_dtypes(include=np.number).columns)
|
416 |
+
|
417 |
+
if group_col and value_col:
|
418 |
+
analyzer = HypothesisTester()
|
419 |
+
result = analyzer.invoke(data=data, group_col=group_col, value_col=value_col)
|
420 |
+
st.subheader("Statistical Test Results")
|
421 |
+
st.json(result)
|
422 |
+
|
423 |
+
elif analysis_type == "Distribution Analysis":
|
424 |
+
num_cols = data.select_dtypes(include=np.number).columns.tolist()
|
425 |
+
selected_cols = st.multiselect("Select Variables", num_cols)
|
426 |
+
if selected_cols:
|
427 |
+
analyzer = DistributionVisualizer()
|
428 |
+
img_data = analyzer.invoke(data=data, columns=selected_cols)
|
429 |
+
st.image(f"data:image/png;base64,{img_data}")
|
430 |
+
|
431 |
+
elif analysis_type == "Train Logistic Regression Model":
|
432 |
+
num_cols = data.select_dtypes(include=np.number).columns.tolist()
|
433 |
+
target_col = st.selectbox("Select Target Variable",
|
434 |
+
data.columns.tolist())
|
435 |
+
selected_cols = st.multiselect("Select Feature Variables", num_cols)
|
436 |
+
if selected_cols and target_col:
|
437 |
+
analyzer = LogisticRegressionTrainer()
|
438 |
+
result = analyzer.invoke(data=data, target_col=target_col, columns=selected_cols)
|
439 |
+
st.subheader("Logistic Regression Model Results")
|
440 |
+
st.json(result)
|
441 |
+
with business_logic_tab:
|
442 |
+
st.header("Business Logic")
|
443 |
+
st.subheader("Data Modelling")
|
444 |
+
model_name = st.text_input("Enter the name of the model")
|
445 |
+
|
446 |
+
if model_name:
|
447 |
+
kpis = st.text_input("Enter KPIs (comma-separated)")
|
448 |
+
dimensions = st.text_input("Enter Dimensions (comma-separated)")
|
449 |
+
custom_calculations = st.text_area("Custom calculations (JSON format), use {'df': DataFrame}")
|
450 |
+
relations = st.text_area("Relations (JSON format), use {'table1': 'table2'}")
|
451 |
+
if st.button("Add Data Model"):
|
452 |
+
try:
|
453 |
+
custom_calculations_dict = None if not custom_calculations else json.loads(custom_calculations)
|
454 |
+
relations_dict = None if not relations else json.loads(relations)
|
455 |
+
model = DataModel(name=model_name,
|
456 |
+
kpis= [kpi.strip() for kpi in kpis.split(',')] if kpis else [],
|
457 |
+
dimensions=[dim.strip() for dim in dimensions.split(',')] if dimensions else [],
|
458 |
+
custom_calculations= custom_calculations_dict,
|
459 |
+
relations = relations_dict)
|
460 |
+
st.session_state.data_modelling.add_model(model)
|
461 |
+
st.success(f"Added data model {model_name}")
|
462 |
+
except Exception as e:
|
463 |
+
st.error(f"Error creating data model: {e}")
|
464 |
+
|
465 |
+
st.subheader("Business Rules")
|
466 |
+
rule_name = st.text_input("Enter Rule Name")
|
467 |
+
condition = st.text_area("Enter Rule Condition (use 'df' for data frame), Example df['sales'] > 100")
|
468 |
+
action = st.text_area("Enter Action to be Taken on Rule Match")
|
469 |
+
if st.button("Add Business Rule"):
|
470 |
+
try:
|
471 |
+
rule = BusinessRule(name=rule_name, condition=condition, action=action)
|
472 |
+
st.session_state.business_rules.add_rule(rule)
|
473 |
+
st.success("Added Business Rule")
|
474 |
+
except Exception as e:
|
475 |
+
st.error(f"Error in rule definition: {e}")
|
476 |
+
|
477 |
+
st.subheader("KPI Definition")
|
478 |
+
kpi_name = st.text_input("Enter KPI name")
|
479 |
+
kpi_calculation = st.text_area("Enter KPI calculation (use 'df' for data frame), Example df['revenue'].sum()")
|
480 |
+
threshold = st.text_input("Enter Threshold for KPI")
|
481 |
+
if st.button("Add KPI"):
|
482 |
+
try:
|
483 |
+
threshold_value = float(threshold) if threshold else None
|
484 |
+
kpi = KPI(name=kpi_name, calculation=kpi_calculation, threshold=threshold_value)
|
485 |
+
st.session_state.kpi_monitoring.add_kpi(kpi)
|
486 |
+
st.success(f"Added KPI {kpi_name}")
|
487 |
+
except Exception as e:
|
488 |
+
st.error(f"Error creating KPI: {e}")
|
489 |
+
if selected_data_key:
|
490 |
+
data = st.session_state.data[selected_data_key]
|
491 |
+
if st.button("Execute Business Rules"):
|
492 |
+
with st.spinner("Executing Business Rules.."):
|
493 |
+
result = st.session_state.business_rules.execute_rules(data)
|
494 |
st.json(result)
|
495 |
+
if st.button("Calculate KPIs"):
|
496 |
+
with st.spinner("Calculating KPIs..."):
|
497 |
+
result = st.session_state.kpi_monitoring.calculate_kpis(data)
|
498 |
+
st.json(result)
|
499 |
+
|
500 |
+
with insights_tab:
|
501 |
+
if selected_data_key:
|
502 |
+
data = st.session_state.data[selected_data_key]
|
503 |
+
available_analysis = ["EDA", "temporal", "distribution", "hypothesis", "model"]
|
504 |
+
selected_analysis = st.multiselect("Select Analysis", available_analysis)
|
505 |
+
if st.button("Generate Automated Insights"):
|
506 |
+
with st.spinner("Generating Insights"):
|
507 |
+
results = st.session_state.automated_insights.generate_insights(data, analysis_names=selected_analysis)
|
508 |
+
st.json(results)
|
509 |
|
510 |
+
with reports_tab:
|
511 |
+
st.header("Reports")
|
512 |
+
report_name = st.text_input("Report Name")
|
513 |
+
report_def = st.text_area("Report definition")
|
514 |
+
if st.button("Create Report Definition"):
|
515 |
+
st.session_state.automated_reports.create_report_definition(report_name, report_def)
|
516 |
+
st.success("Report definition created")
|
517 |
+
if selected_data_key:
|
518 |
+
data = st.session_state.data
|
519 |
+
if st.button("Generate Report"):
|
520 |
+
with st.spinner("Generating Report..."):
|
521 |
+
report = st.session_state.automated_reports.generate_report(report_name, data)
|
522 |
+
|
523 |
+
with custom_research_tab:
|
524 |
+
research_query = st.text_area("Enter Research Question:", height=150,
|
525 |
+
placeholder="E.g., 'What factors are most predictive of X outcome?'")
|
526 |
+
|
527 |
+
if st.button("Execute Custom Research"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
with st.spinner("Conducting rigorous analysis..."):
|
529 |
+
if selected_data_key:
|
530 |
+
data = st.session_state.data[selected_data_key]
|
531 |
+
result = st.session_state.researcher.research(
|
532 |
+
research_query, data
|
533 |
+
)
|
534 |
+
st.markdown("## Research Findings")
|
535 |
+
st.markdown(result)
|
536 |
|
537 |
if __name__ == "__main__":
|
538 |
main()
|