import streamlit as st import pandas as pd from typing import Dict, List, Optional, Any from pydantic import BaseModel, Field import base64 import io import matplotlib.pyplot as plt import seaborn as sns from abc import ABC, abstractmethod from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.stattools import adfuller from langchain.prompts import PromptTemplate from groq import Groq import os import numpy as np from scipy.stats import ttest_ind, f_oneway import json # Initialize Groq Client client = Groq(api_key=os.environ.get("GROQ_API_KEY")) # ---------------------- Base Classes and Schemas --------------------------- class ResearchInput(BaseModel): """Base schema for research tool inputs""" data_key: str = Field(..., description="Session state key containing DataFrame") columns: Optional[List[str]] = Field(None, description="List of columns to analyze") class TemporalAnalysisInput(ResearchInput): """Schema for temporal analysis""" time_col: str = Field(..., description="Name of timestamp column") value_col: str = Field(..., description="Name of value column to analyze") class HypothesisInput(ResearchInput): """Schema for hypothesis testing""" group_col: str = Field(..., description="Categorical column defining groups") value_col: str = Field(..., description="Numerical column to compare") class ModelTrainingInput(ResearchInput): """Schema for model training""" target_col: str = Field(..., description="Name of target column") class DataAnalyzer(ABC): """Abstract base class for data analysis modules""" @abstractmethod def invoke(self, **kwargs) -> Dict[str, Any]: pass # ---------------------- Concrete Analyzer Implementations --------------------------- class AdvancedEDA(DataAnalyzer): """Comprehensive Exploratory Data Analysis""" def invoke(self, data: pd.DataFrame, **kwargs) -> Dict[str, Any]: try: analysis = { "dimensionality": { "rows": len(data), "columns": list(data.columns), "memory_usage": f"{data.memory_usage().sum() / 1e6:.2f} MB" }, "statistical_profile": data.describe(percentiles=[.25, .5, .75]).to_dict(), "temporal_analysis": { "date_ranges": { col: { "min": data[col].min(), "max": data[col].max() } for col in data.select_dtypes(include='datetime').columns } }, "data_quality": { "missing_values": data.isnull().sum().to_dict(), "duplicates": data.duplicated().sum(), "cardinality": { col: data[col].nunique() for col in data.columns } } } return analysis except Exception as e: return {"error": f"EDA Failed: {str(e)}"} class DistributionVisualizer(DataAnalyzer): """Distribution visualizations""" def invoke(self, data: pd.DataFrame, columns: List[str], **kwargs) -> str: try: plt.figure(figsize=(12, 6)) for i, col in enumerate(columns, 1): plt.subplot(1, len(columns), i) sns.histplot(data[col], kde=True, stat="density") plt.title(f'Distribution of {col}', fontsize=10) plt.xticks(fontsize=8) plt.yticks(fontsize=8) plt.tight_layout() buf = io.BytesIO() plt.savefig(buf, format='png', dpi=300, bbox_inches='tight') plt.close() return base64.b64encode(buf.getvalue()).decode() except Exception as e: return f"Visualization Error: {str(e)}" class TemporalAnalyzer(DataAnalyzer): """Time series analysis""" def invoke(self, data: pd.DataFrame, time_col: str, value_col: str, **kwargs) -> Dict[str, Any]: try: ts_data = data.set_index(pd.to_datetime(data[time_col]))[value_col] decomposition = seasonal_decompose(ts_data, period=365) plt.figure(figsize=(12, 8)) decomposition.plot() plt.tight_layout() buf = io.BytesIO() plt.savefig(buf, format='png') plt.close() plot_data = base64.b64encode(buf.getvalue()).decode() return { "trend_statistics": { "stationarity": adfuller(ts_data)[1], "seasonality_strength": max(decomposition.seasonal) }, "visualization": plot_data } except Exception as e: return {"error": f"Temporal Analysis Failed: {str(e)}"} class HypothesisTester(DataAnalyzer): """Statistical hypothesis testing""" def invoke(self, data: pd.DataFrame, group_col: str, value_col: str, **kwargs) -> Dict[str, Any]: try: groups = data[group_col].unique() if len(groups) < 2: return {"error": "Insufficient groups for comparison"} if len(groups) == 2: group_data = [data[data[group_col] == g][value_col] for g in groups] stat, p = ttest_ind(*group_data) test_type = "Independent t-test" else: group_data = [data[data[group_col] == g][value_col] for g in groups] stat, p = f_oneway(*group_data) test_type = "ANOVA" return { "test_type": test_type, "test_statistic": stat, "p_value": p, "effect_size": { "cohens_d": abs(group_data[0].mean() - group_data[1].mean())/np.sqrt( (group_data[0].var() + group_data[1].var())/2 ) if len(groups) == 2 else None }, "interpretation": self.interpret_p_value(p) } except Exception as e: return {"error": f"Hypothesis Testing Failed: {str(e)}"} def interpret_p_value(self, p: float) -> str: if p < 0.001: return "Very strong evidence against H0" elif p < 0.01: return "Strong evidence against H0" elif p < 0.05: return "Evidence against H0" elif p < 0.1: return "Weak evidence against H0" else: return "No significant evidence against H0" class LogisticRegressionTrainer(DataAnalyzer): """Logistic Regression Model Trainer""" def invoke(self, data: pd.DataFrame, target_col: str, columns: List[str], **kwargs) -> Dict[str, Any]: try: X = data[columns] y = data[target_col] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LogisticRegression(max_iter=1000) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) return { "model_type": "Logistic Regression", "accuracy": accuracy, "model_params": model.get_params() } except Exception as e: return {"error": f"Logistic Regression Model Error: {str(e)}"} # ---------------------- Groq Research Agent --------------------------- class GroqResearcher: """Advanced AI Research Engine using Groq""" def __init__(self, model_name="mixtral-8x7b-32768"): self.model_name = model_name self.system_template = """You are a senior data scientist at a research institution. Analyze this dataset with rigorous statistical methods and provide academic-quality insights: {dataset_info} User Question: {query} Required Format: - Executive Summary (1 paragraph) - Methodology (bullet points) - Key Findings (numbered list) - Limitations - Recommended Next Steps""" def research(self, query: str, data: pd.DataFrame) -> str: """Conduct academic-level analysis using Groq""" try: dataset_info = f""" Dataset Dimensions: {data.shape} Variables: {', '.join(data.columns)} Temporal Coverage: {data.select_dtypes(include='datetime').columns.tolist()} Missing Values: {data.isnull().sum().to_dict()} """ prompt = PromptTemplate.from_template(self.system_template).format( dataset_info=dataset_info, query=query ) completion = client.chat.completions.create( messages=[ {"role": "system", "content": "You are a research AI assistant"}, {"role": "user", "content": prompt} ], model=self.model_name, temperature=0.2, max_tokens=4096, stream=False ) return completion.choices[0].message.content except Exception as e: return f"Research Error: {str(e)}" # ---------------------- Business Logic Layer --------------------------- class BusinessRule(BaseModel): name: str condition: str action: str class BusinessRulesEngine(): def __init__(self): self.rules: Dict[str, BusinessRule] = {} def add_rule(self, rule: BusinessRule): self.rules[rule.name] = rule def execute_rules(self, data: pd.DataFrame): results = {} for rule_name, rule in self.rules.items(): try: if eval(rule.condition, {}, {"df":data}): results[rule_name] = {"rule_matched": True, "action": rule.action} else: results[rule_name] = {"rule_matched": False, "action": None} except Exception as e: results[rule_name] = {"rule_matched": False, "error": str(e)} return results class KPI(BaseModel): name: str calculation: str threshold: Optional[float] = None class KPIMonitoring(): def __init__(self): self.kpis : Dict[str, KPI] = {} def add_kpi(self, kpi:KPI): self.kpis[kpi.name] = kpi def calculate_kpis(self, data: pd.DataFrame): results = {} for kpi_name, kpi in self.kpis.items(): try: results[kpi_name] = eval(kpi.calculation, {}, {"df": data}) except Exception as e: results[kpi_name] = {"error": str(e)} return results class ForecastingEngine(ABC): @abstractmethod def predict(self, data: pd.DataFrame, **kwargs) -> pd.DataFrame: pass class SimpleForecasting(ForecastingEngine): def predict(self, data: pd.DataFrame, period: int = 7, **kwargs) -> pd.DataFrame: #Placeholder for actual forecasting return pd.DataFrame({"forecast":[f"Forecast for the next {period} days"]}) # ---------------------- Insights and Reporting Layer --------------------------- class AutomatedInsights(): def __init__(self): self.analyses : Dict[str, DataAnalyzer] = { "EDA": AdvancedEDA(), "temporal": TemporalAnalyzer(), "distribution": DistributionVisualizer(), "hypothesis": HypothesisTester(), "model": LogisticRegressionTrainer() } def generate_insights(self, data: pd.DataFrame, analysis_names: List[str], **kwargs): results = {} for name in analysis_names: if name in self.analyses: analyzer = self.analyses[name] results[name] = analyzer.invoke(data=data, **kwargs) else: results[name] = {"error": "Analysis not found"} return results class Dashboard(): def __init__(self): self.layout: Dict[str,str] = {} def add_visualisation(self, vis_name: str, vis_type: str): self.layout[vis_name] = vis_type def display_dashboard(self, data_dict: Dict[str,pd.DataFrame]): st.header("Dashboard") for vis_name, vis_type in self.layout.items(): st.subheader(vis_name) if vis_type == "table": if vis_name in data_dict: st.table(data_dict[vis_name]) else: st.write("Data Not Found") elif vis_type == "plot": if vis_name in data_dict: df = data_dict[vis_name] if len(df.columns) > 1: fig = plt.figure() sns.lineplot(data=df) st.pyplot(fig) else: st.write("Please have more than 1 column") else: st.write("Data not found") class AutomatedReports(): def __init__(self): self.report_definition: Dict[str,str] = {} def create_report_definition(self, report_name: str, definition: str): self.report_definition[report_name] = definition def generate_report(self, report_name: str, data:Dict[str, pd.DataFrame]): if report_name not in self.report_definition: return {"error":"Report name not found"} st.header(f"Report : {report_name}") st.write(f"Report Definition: {self.report_definition[report_name]}") for df_name, df in data.items(): st.subheader(f"Data: {df_name}") st.table(df) # ---------------------- Data Acquisition Layer --------------------------- class DataSource(ABC): """Base class for data sources.""" @abstractmethod def connect(self) -> None: """Connect to the data source.""" pass @abstractmethod def fetch_data(self, query: str, **kwargs) -> pd.DataFrame: """Fetch the data based on a specific query.""" pass class CSVDataSource(DataSource): """Data source for CSV files.""" def __init__(self, file_path: str): self.file_path = file_path self.data: Optional[pd.DataFrame] = None def connect(self): self.data = pd.read_csv(self.file_path) def fetch_data(self, query: str = None, **kwargs) -> pd.DataFrame: if self.data is None: raise Exception("No connection is made, call connect()") return self.data class DatabaseSource(DataSource): def __init__(self, connection_string: str, database_type: str): self.connection_string = connection_string self.database_type = database_type self.connection = None def connect(self): if self.database_type.lower() == "sql": #Placeholder for the actual database connection self.connection = "Connected to SQL Database" else: raise Exception(f"Database type '{self.database_type}' is not supported") def fetch_data(self, query: str, **kwargs) -> pd.DataFrame: if self.connection is None: raise Exception("No connection is made, call connect()") #Placeholder for the data fetching return pd.DataFrame({"result":[f"Fetched data based on query: {query}"]}) class DataIngestion: def __init__(self): self.sources : Dict[str, DataSource] = {} def add_source(self, source_name: str, source: DataSource): self.sources[source_name] = source def ingest_data(self, source_name: str, query: str = None, **kwargs) -> pd.DataFrame: if source_name not in self.sources: raise Exception(f"Source '{source_name}' not found") source = self.sources[source_name] source.connect() return source.fetch_data(query, **kwargs) class DataModel(BaseModel): name : str kpis : List[str] = Field(default_factory=list) dimensions : List[str] = Field(default_factory=list) custom_calculations : Optional[Dict[str, str]] = None relations: Optional[Dict[str,str]] = None #Example {table1: table2} def to_json(self): return json.dumps(self.dict()) @staticmethod def from_json(json_str): return DataModel(**json.loads(json_str)) class DataModelling(): def __init__(self): self.models : Dict[str, DataModel] = {} def add_model(self, model:DataModel): self.models[model.name] = model def get_model(self, model_name: str) -> DataModel: if model_name not in self.models: raise Exception(f"Model '{model_name}' not found") return self.models[model_name] # ---------------------- Main Streamlit Application --------------------------- def main(): st.set_page_config(page_title="AI BI Automation Platform", layout="wide") st.title("🚀 AI-Powered Business Intelligence Automation Platform") # Session State if 'data' not in st.session_state: st.session_state.data = {} # store pd.DataFrame under a name if 'data_ingestion' not in st.session_state: st.session_state.data_ingestion = DataIngestion() if 'data_modelling' not in st.session_state: st.session_state.data_modelling = DataModelling() if 'business_rules' not in st.session_state: st.session_state.business_rules = BusinessRulesEngine() if 'kpi_monitoring' not in st.session_state: st.session_state.kpi_monitoring = KPIMonitoring() if 'forecasting_engine' not in st.session_state: st.session_state.forecasting_engine = SimpleForecasting() if 'automated_insights' not in st.session_state: st.session_state.automated_insights = AutomatedInsights() if 'dashboard' not in st.session_state: st.session_state.dashboard = Dashboard() if 'automated_reports' not in st.session_state: st.session_state.automated_reports = AutomatedReports() if 'researcher' not in st.session_state: st.session_state.researcher = GroqResearcher() # Sidebar for Data Management with st.sidebar: st.header("⚙️ Data Management") data_source_selection = st.selectbox("Select Data Source Type",["CSV","SQL Database"]) if data_source_selection == "CSV": uploaded_file = st.file_uploader("Upload research dataset (CSV)", type=["csv"]) if uploaded_file: source_name = st.text_input("Data Source Name") if source_name: try: csv_source = CSVDataSource(file_path=uploaded_file) st.session_state.data_ingestion.add_source(source_name,csv_source) st.success(f"Uploaded {uploaded_file.name}") except Exception as e: st.error(f"Error loading dataset: {e}") elif data_source_selection == "SQL Database": conn_str = st.text_input("Enter connection string for SQL DB") if conn_str: source_name = st.text_input("Data Source Name") if source_name: try: sql_source = DatabaseSource(connection_string=conn_str, database_type="sql") st.session_state.data_ingestion.add_source(source_name, sql_source) st.success(f"Added SQL DB Source {source_name}") except Exception as e: st.error(f"Error loading database source {e}") if st.button("Ingest Data"): if st.session_state.data_ingestion.sources: source_name_to_fetch = st.selectbox("Select Data Source to Ingest", list(st.session_state.data_ingestion.sources.keys())) query = st.text_area("Optional Query to Fetch data") if source_name_to_fetch: with st.spinner("Ingesting data..."): try: data = st.session_state.data_ingestion.ingest_data(source_name_to_fetch, query) st.session_state.data[source_name_to_fetch] = data st.success(f"Ingested data from {source_name_to_fetch}") except Exception as e: st.error(f"Ingestion failed: {e}") else: st.error("No data source added, please add data source") if st.session_state.data: col1, col2 = st.columns([1, 3]) with col1: st.subheader("Dataset Metadata") data_source_keys = list(st.session_state.data.keys()) selected_data_key = st.selectbox("Select Dataset", data_source_keys) if selected_data_key: data = st.session_state.data[selected_data_key] st.json({ "Variables": list(data.columns), "Time Range": { col: { "min": data[col].min(), "max": data[col].max() } for col in data.select_dtypes(include='datetime').columns }, "Size": f"{data.memory_usage().sum() / 1e6:.2f} MB" }) with col2: analysis_tab, business_logic_tab, insights_tab, reports_tab, custom_research_tab = st.tabs([ "Data Analysis", "Business Logic", "Insights", "Reports", "Custom Research" ]) with analysis_tab: if selected_data_key: analysis_type = st.selectbox("Select Analysis Mode", [ "Exploratory Data Analysis", "Temporal Pattern Analysis", "Comparative Statistics", "Distribution Analysis", "Train Logistic Regression Model" ]) data = st.session_state.data[selected_data_key] if analysis_type == "Exploratory Data Analysis": analyzer = AdvancedEDA() eda_result = analyzer.invoke(data=data) st.subheader("Data Quality Report") st.json(eda_result) elif analysis_type == "Temporal Pattern Analysis": time_col = st.selectbox("Temporal Variable", data.select_dtypes(include='datetime').columns) value_col = st.selectbox("Analysis Variable", data.select_dtypes(include=np.number).columns) if time_col and value_col: analyzer = TemporalAnalyzer() result = analyzer.invoke(data=data, time_col=time_col, value_col=value_col) if "visualization" in result: st.image(f"data:image/png;base64,{result['visualization']}") st.json(result) elif analysis_type == "Comparative Statistics": group_col = st.selectbox("Grouping Variable", data.select_dtypes(include='category').columns) value_col = st.selectbox("Metric Variable", data.select_dtypes(include=np.number).columns) if group_col and value_col: analyzer = HypothesisTester() result = analyzer.invoke(data=data, group_col=group_col, value_col=value_col) st.subheader("Statistical Test Results") st.json(result) elif analysis_type == "Distribution Analysis": num_cols = data.select_dtypes(include=np.number).columns.tolist() selected_cols = st.multiselect("Select Variables", num_cols) if selected_cols: analyzer = DistributionVisualizer() img_data = analyzer.invoke(data=data, columns=selected_cols) st.image(f"data:image/png;base64,{img_data}") elif analysis_type == "Train Logistic Regression Model": num_cols = data.select_dtypes(include=np.number).columns.tolist() target_col = st.selectbox("Select Target Variable", data.columns.tolist()) selected_cols = st.multiselect("Select Feature Variables", num_cols) if selected_cols and target_col: analyzer = LogisticRegressionTrainer() result = analyzer.invoke(data=data, target_col=target_col, columns=selected_cols) st.subheader("Logistic Regression Model Results") st.json(result) with business_logic_tab: st.header("Business Logic") st.subheader("Data Modelling") model_name = st.text_input("Enter the name of the model") if model_name: kpis = st.text_input("Enter KPIs (comma-separated)") dimensions = st.text_input("Enter Dimensions (comma-separated)") custom_calculations = st.text_area("Custom calculations (JSON format), use {'df': DataFrame}") relations = st.text_area("Relations (JSON format), use {'table1': 'table2'}") if st.button("Add Data Model"): try: custom_calculations_dict = None if not custom_calculations else json.loads(custom_calculations) relations_dict = None if not relations else json.loads(relations) model = DataModel(name=model_name, kpis= [kpi.strip() for kpi in kpis.split(',')] if kpis else [], dimensions=[dim.strip() for dim in dimensions.split(',')] if dimensions else [], custom_calculations= custom_calculations_dict, relations = relations_dict) st.session_state.data_modelling.add_model(model) st.success(f"Added data model {model_name}") except Exception as e: st.error(f"Error creating data model: {e}") st.subheader("Business Rules") rule_name = st.text_input("Enter Rule Name") condition = st.text_area("Enter Rule Condition (use 'df' for data frame), Example df['sales'] > 100") action = st.text_area("Enter Action to be Taken on Rule Match") if st.button("Add Business Rule"): try: rule = BusinessRule(name=rule_name, condition=condition, action=action) st.session_state.business_rules.add_rule(rule) st.success("Added Business Rule") except Exception as e: st.error(f"Error in rule definition: {e}") st.subheader("KPI Definition") kpi_name = st.text_input("Enter KPI name") kpi_calculation = st.text_area("Enter KPI calculation (use 'df' for data frame), Example df['revenue'].sum()") threshold = st.text_input("Enter Threshold for KPI") if st.button("Add KPI"): try: threshold_value = float(threshold) if threshold else None kpi = KPI(name=kpi_name, calculation=kpi_calculation, threshold=threshold_value) st.session_state.kpi_monitoring.add_kpi(kpi) st.success(f"Added KPI {kpi_name}") except Exception as e: st.error(f"Error creating KPI: {e}") if selected_data_key: data = st.session_state.data[selected_data_key] if st.button("Execute Business Rules"): with st.spinner("Executing Business Rules.."): result = st.session_state.business_rules.execute_rules(data) st.json(result) if st.button("Calculate KPIs"): with st.spinner("Calculating KPIs..."): result = st.session_state.kpi_monitoring.calculate_kpis(data) st.json(result) with insights_tab: if selected_data_key: data = st.session_state.data[selected_data_key] available_analysis = ["EDA", "temporal", "distribution", "hypothesis", "model"] selected_analysis = st.multiselect("Select Analysis", available_analysis) if st.button("Generate Automated Insights"): with st.spinner("Generating Insights"): results = st.session_state.automated_insights.generate_insights(data, analysis_names=selected_analysis) st.json(results) with reports_tab: st.header("Reports") report_name = st.text_input("Report Name") report_def = st.text_area("Report definition") if st.button("Create Report Definition"): st.session_state.automated_reports.create_report_definition(report_name, report_def) st.success("Report definition created") if selected_data_key: data = st.session_state.data if st.button("Generate Report"): with st.spinner("Generating Report..."): report = st.session_state.automated_reports.generate_report(report_name, data) with custom_research_tab: research_query = st.text_area("Enter Research Question:", height=150, placeholder="E.g., 'What factors are most predictive of X outcome?'") if st.button("Execute Custom Research"): with st.spinner("Conducting rigorous analysis..."): if selected_data_key: data = st.session_state.data[selected_data_key] result = st.session_state.researcher.research( research_query, data ) st.markdown("## Research Findings") st.markdown(result) if __name__ == "__main__": main()