Flux_Real / app.py
mgbam's picture
Add application file
2414743
import random
import torch
from PIL import Image
import gradio as gr
from diffusers import DiffusionPipeline
# Configure deterministic behavior for reproducibility
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
MAX_SEED = 2**32 - 1
class ModelManager:
"""
Handles model initialization, LoRA weight loading, and image generation.
"""
def __init__(self, base_model: str, lora_repo: str, trigger_word: str = ""):
self.trigger_word = trigger_word
self.pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
self.pipe.load_lora_weights(lora_repo)
self.pipe.to("cuda")
def generate_image(self, prompt: str, cfg_scale: float, steps: int, seed: int,
width: int, height: int, lora_scale: float, progress_callback) -> Image.Image:
"""
Generates an image based on the given prompt and parameters using a callback for progress updates.
"""
# Establish reproducible generator
generator = torch.Generator(device="cuda").manual_seed(seed)
full_prompt = f"{prompt} {self.trigger_word}"
def callback_fn(step: int, timestep: int, latents):
percentage = int((step / steps) * 100)
message = f"Processing step {step} of {steps}..."
progress_callback(percentage, message)
# Generate image with integrated progress reporting
image = self.pipe(
prompt=full_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
callback=callback_fn,
callback_steps=1,
).images[0]
return image
# Initialize the model manager with specified models and LoRA weights
model_manager = ModelManager(
base_model="black-forest-labs/FLUX.1-dev",
lora_repo="XLabs-AI/flux-RealismLora",
trigger_word=""
)
def run_generation(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
"""
Gradio interface callback to manage seed randomization, progress updates,
and image generation using the ModelManager.
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Start the progress
progress(0, "Starting image generation...")
# Generate the image using the model manager with progress callback integration
image = model_manager.generate_image(
prompt, cfg_scale, steps, seed, width, height, lora_scale, progress
)
# Mark completion
progress(100, "Completed!")
return image, seed
# Example parameters and image path for initializing the interface with defaults
example_image_path = "example0.webp"
example_prompt = (
"A Jelita Sukawati speaker is captured mid-speech. She has long, dark brown hair that cascades over her shoulders, "
"framing her radiant, smiling face. Her Latina features are highlighted by warm, sun-kissed skin and bright, "
"expressive eyes. She gestures with her left hand, displaying a delicate ring on her pinky finger, as she speaks passionately. "
"The woman is wearing a colorful, patterned dress with a green lanyard featuring multiple badges and logos hanging around her neck. "
"The lanyard prominently displays the 'CagliostroLab' text. Behind her, there is a blurred background with a white banner "
"containing logos and text, indicating a professional or conference setting. The overall scene captures the energy and vibrancy "
"of her presentation."
)
example_cfg_scale = 3.2
example_steps = 32
example_width = 1152
example_height = 896
example_seed = 3981632454
example_lora_scale = 0.85
def load_example():
# Load example image for initial display
example_image = Image.open(example_image_path)
return (
example_prompt,
example_cfg_scale,
example_steps,
True,
example_seed,
example_width,
example_height,
example_lora_scale,
example_image
)
with gr.Blocks() as app:
gr.Markdown("# Flux RealismLora Image Generator")
with gr.Row():
with gr.Column(scale=3):
prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
generate_button = gr.Button("Generate")
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
with gr.Column(scale=1):
result = gr.Image(label="Generated Image")
gr.Markdown(
"Generate images using RealismLora and a text prompt.\n"
"[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
)
# Load example data on launch
app.load(
load_example,
inputs=[],
outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]
)
# Set up button interaction
generate_button.click(
run_generation,
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue()
app.launch()