import random import torch from PIL import Image import gradio as gr from diffusers import DiffusionPipeline # Configure deterministic behavior for reproducibility torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cuda.matmul.allow_tf32 = True MAX_SEED = 2**32 - 1 class ModelManager: """ Handles model initialization, LoRA weight loading, and image generation. """ def __init__(self, base_model: str, lora_repo: str, trigger_word: str = ""): self.trigger_word = trigger_word self.pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) self.pipe.load_lora_weights(lora_repo) self.pipe.to("cuda") def generate_image(self, prompt: str, cfg_scale: float, steps: int, seed: int, width: int, height: int, lora_scale: float, progress_callback) -> Image.Image: """ Generates an image based on the given prompt and parameters using a callback for progress updates. """ # Establish reproducible generator generator = torch.Generator(device="cuda").manual_seed(seed) full_prompt = f"{prompt} {self.trigger_word}" def callback_fn(step: int, timestep: int, latents): percentage = int((step / steps) * 100) message = f"Processing step {step} of {steps}..." progress_callback(percentage, message) # Generate image with integrated progress reporting image = self.pipe( prompt=full_prompt, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, callback=callback_fn, callback_steps=1, ).images[0] return image # Initialize the model manager with specified models and LoRA weights model_manager = ModelManager( base_model="black-forest-labs/FLUX.1-dev", lora_repo="XLabs-AI/flux-RealismLora", trigger_word="" ) def run_generation(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): """ Gradio interface callback to manage seed randomization, progress updates, and image generation using the ModelManager. """ if randomize_seed: seed = random.randint(0, MAX_SEED) # Start the progress progress(0, "Starting image generation...") # Generate the image using the model manager with progress callback integration image = model_manager.generate_image( prompt, cfg_scale, steps, seed, width, height, lora_scale, progress ) # Mark completion progress(100, "Completed!") return image, seed # Example parameters and image path for initializing the interface with defaults example_image_path = "example0.webp" example_prompt = ( "A Jelita Sukawati speaker is captured mid-speech. She has long, dark brown hair that cascades over her shoulders, " "framing her radiant, smiling face. Her Latina features are highlighted by warm, sun-kissed skin and bright, " "expressive eyes. She gestures with her left hand, displaying a delicate ring on her pinky finger, as she speaks passionately. " "The woman is wearing a colorful, patterned dress with a green lanyard featuring multiple badges and logos hanging around her neck. " "The lanyard prominently displays the 'CagliostroLab' text. Behind her, there is a blurred background with a white banner " "containing logos and text, indicating a professional or conference setting. The overall scene captures the energy and vibrancy " "of her presentation." ) example_cfg_scale = 3.2 example_steps = 32 example_width = 1152 example_height = 896 example_seed = 3981632454 example_lora_scale = 0.85 def load_example(): # Load example image for initial display example_image = Image.open(example_image_path) return ( example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image ) with gr.Blocks() as app: gr.Markdown("# Flux RealismLora Image Generator") with gr.Row(): with gr.Column(scale=3): prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5) generate_button = gr.Button("Generate") cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale) steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps) width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height) randomize_seed = gr.Checkbox(True, label="Randomize seed") seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed) lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale) with gr.Column(scale=1): result = gr.Image(label="Generated Image") gr.Markdown( "Generate images using RealismLora and a text prompt.\n" "[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]" ) # Load example data on launch app.load( load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result] ) # Set up button interaction generate_button.click( run_generation, inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], outputs=[result, seed] ) app.queue() app.launch()