File size: 4,399 Bytes
02970af 4a6179c 02970af c4bf66f 4a6179c c4bf66f 4a6179c 1786f57 02970af c4bf66f 1786f57 4a6179c 02970af c4bf66f 4a6179c 1786f57 4a6179c 02970af c4bf66f 1786f57 c4bf66f 4a6179c 02970af 4a6179c 02970af 4a6179c c4bf66f 1786f57 4a6179c c4bf66f 4a6179c c4bf66f 4a6179c c4bf66f 02970af 4a6179c c4bf66f 02970af 4a6179c 02970af 4a6179c 02970af 4a6179c c4bf66f 4a6179c c4bf66f 02970af 4a6179c c4bf66f 02970af c4bf66f 02970af c4bf66f 02970af 4a6179c 02970af 4a6179c 02970af 4a6179c 02970af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# app.py
import asyncio
import re
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph
from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
from mcp.protocols import draft_protocol
# Streamlit config
st.set_page_config(page_title="MedGenesis AI", layout="wide")
if "res" not in st.session_state:
st.session_state.res = None
st.title("🧬 MedGenesis AI")
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
query = st.text_input("Enter biomedical question")
# PDF generator
def _make_pdf(papers):
pdf = FPDF()
pdf.add_page(); pdf.set_font("Helvetica", size=12)
pdf.cell(0, 10, "MedGenesis AI – Results", ln=True, align="C"); pdf.ln(5)
for i, p in enumerate(papers, 1):
pdf.set_font("Helvetica", "B", 11)
pdf.multi_cell(0, 7, f"{i}. {p.get('title','')}")
pdf.set_font("Helvetica", size=9)
body = f"{p.get('authors','')}
{p.get('summary','')}
{p.get('link','')}"
pdf.multi_cell(0, 6, body); pdf.ln(3)
return pdf.output(dest="S").encode("latin-1", errors="replace")
# Run search
enabled = st.button("Run Search 🚀") and query.strip()
if enabled:
with st.spinner("Gathering data…"):
st.session_state.res = asyncio.run(orchestrate_search(query, llm))
res = st.session_state.res
if not res:
st.info("Enter a query and press Run Search")
st.stop()
# Tabs
tabs = st.tabs([
"Results", "Graph", "Clusters", "Variants",
"Trials", "Metrics", "Visuals", "Protocols"
])
# Results
title_tab, graph_tab, clust_tab, var_tab, trial_tab, met_tab, vis_tab, proto_tab = tabs
with title_tab:
for i, p in enumerate(res["papers"], 1):
st.markdown(f"**{i}. [{p['title']}]({p['link']})**")
st.write(p["summary"])
c1, c2 = st.columns(2)
c1.download_button("CSV", pd.DataFrame(res["papers"]).to_csv(index=False),
"papers.csv", "text/csv")
c2.download_button("PDF", _make_pdf(res["papers"]),
"papers.pdf", "application/pdf")
st.subheader("AI summary"); st.info(res["ai_summary"])
# Graph
with graph_tab:
nodes, edges, cfg = build_agraph(
res["papers"], res["umls"], res["drug_safety"], res["umls_relations"]
)
hl = st.text_input("Highlight node:", key="hl")
if hl:
pat = re.compile(re.escape(hl), re.I)
for n in nodes:
n.color = "#f1c40f" if pat.search(n.label) else n.color
agraph(nodes, edges, cfg)
# Clusters
with clust_tab:
clusters = res.get("clusters", [])
if clusters:
df = pd.DataFrame({
"title": [p['title'] for p in res['papers']],
"cluster": clusters
})
st.write("### Paper Clusters")
for c in sorted(set(clusters)):
st.write(f"**Cluster {c}**")
for t in df[df['cluster']==c]['title']:
st.write(f"- {t}")
else:
st.info("No clusters to show.")
# Variants
with var_tab:
if res.get("variants"):
st.json(res["variants"])
else:
st.warning("No variants found. Try 'TP53' or 'BRCA1'.")
# Trials
with trial_tab:
if res.get("clinical_trials"):
st.json(res["clinical_trials"])
else:
st.warning("No trials found. Try a disease or drug.")
# Metrics
with met_tab:
G = build_nx(
[n.__dict__ for n in nodes], [e.__dict__ for e in edges]
)
st.metric("Density", f"{get_density(G):.3f}")
st.markdown("**Top hubs**")
for nid, score in get_top_hubs(G):
lbl = next((n.label for n in nodes if n.id==nid), nid)
st.write(f"- {lbl}: {score:.3f}")
# Visuals
with vis_tab:
years = [p.get("published","")[:4] for p in res["papers"] if p.get("published")]
if years:
st.plotly_chart(px.histogram(years, nbins=10, title="Publication Year"))
# Protocols
with proto_tab:
hyp = st.text_input("Enter hypothesis for protocol:", key="proto_q")
if st.button("Draft Protocol") and hyp.strip():
with st.spinner("Generating protocol…"):
doc = asyncio.run(draft_protocol(
hyp, context=res["ai_summary"], llm=llm
))
st.subheader("Experimental Protocol")
st.write(doc) |