|
|
|
import asyncio |
|
from typing import Any, Dict, List |
|
|
|
from mcp.arxiv import fetch_arxiv |
|
from mcp.pubmed import fetch_pubmed |
|
from mcp.nlp import extract_umls_concepts |
|
from mcp.umls import lookup_umls |
|
from mcp.umls_rel import fetch_relations |
|
from mcp.openfda import fetch_drug_safety |
|
from mcp.ncbi import search_gene, get_mesh_definition |
|
from mcp.disgenet import disease_to_genes |
|
from mcp.clinicaltrials import search_trials |
|
from mcp.mygene import mygene |
|
from mcp.opentargets import ot |
|
from mcp.cbio import cbio |
|
from mcp.openai_utils import ai_summarize, ai_qa |
|
from mcp.gemini import gemini_summarize, gemini_qa |
|
from mcp.embeddings import embed_texts, cluster_embeddings |
|
|
|
|
|
def _get_llm(llm: str): |
|
""" |
|
Route summarization and QA to the chosen engine. |
|
""" |
|
if llm.lower() == "gemini": |
|
return gemini_summarize, gemini_qa |
|
return ai_summarize, ai_qa |
|
|
|
|
|
async def orchestrate_search(query: str, llm: str = "openai") -> Dict[str, Any]: |
|
""" |
|
Fetch papers, extract concepts & relations, enrich data, |
|
compute embeddings+clusters, and run LLM summary. |
|
""" |
|
|
|
arxiv_task = fetch_arxiv(query) |
|
pubmed_task = fetch_pubmed(query) |
|
lit_results = await asyncio.gather(arxiv_task, pubmed_task, return_exceptions=True) |
|
papers: List[Dict] = [] |
|
for res in lit_results: |
|
if isinstance(res, list): |
|
papers.extend(res) |
|
|
|
|
|
blob = " ".join(p.get("summary", "") for p in papers) |
|
umls = await extract_umls_concepts(blob) |
|
|
|
|
|
rel_tasks = [fetch_relations(c["cui"]) for c in umls] |
|
umls_relations = await asyncio.gather(*rel_tasks, return_exceptions=True) |
|
|
|
|
|
names = [c["name"] for c in umls] |
|
fda_tasks = [fetch_drug_safety(n) for n in names] |
|
gene_task = search_gene(names[0]) if names else asyncio.sleep(0, result=[]) |
|
mesh_task = get_mesh_definition(names[0]) if names else asyncio.sleep(0, result="") |
|
dis_task = disease_to_genes(names[0]) if names else asyncio.sleep(0, result=[]) |
|
trials_task = search_trials(query) |
|
ot_task = ot.fetch(names[0]) if names else asyncio.sleep(0, result=[]) |
|
cbio_task = cbio.fetch_variants(names[0]) if names else asyncio.sleep(0, result=[]) |
|
|
|
|
|
fda, gene, mesh, dis, trials, ot_assoc, variants = await asyncio.gather( |
|
asyncio.gather(*fda_tasks, return_exceptions=True), |
|
gene_task, mesh_task, dis_task, |
|
trials_task, ot_task, cbio_task, |
|
return_exceptions=False |
|
) |
|
|
|
|
|
summaries = [p.get("summary", "") for p in papers] |
|
if summaries: |
|
embeddings = await embed_texts(summaries) |
|
clusters = await cluster_embeddings( |
|
embeddings, n_clusters = max(2, min(10, len(embeddings)//2)) |
|
) |
|
else: |
|
embeddings, clusters = [], [] |
|
|
|
|
|
summarize_fn, _ = _get_llm(llm) |
|
try: |
|
ai_summary = await summarize_fn(blob) |
|
except Exception: |
|
ai_summary = "LLM summary failed." |
|
|
|
return { |
|
"papers": papers, |
|
"umls": umls, |
|
"umls_relations": umls_relations, |
|
"drug_safety": fda, |
|
"genes": [gene], |
|
"mesh_defs": [mesh], |
|
"gene_disease": dis, |
|
"clinical_trials": trials, |
|
"ot_associations": ot_assoc, |
|
"variants": variants, |
|
"embeddings": embeddings, |
|
"clusters": clusters, |
|
"ai_summary": ai_summary, |
|
"llm_used": llm.lower() |
|
} |
|
|
|
|
|
async def answer_ai_question(question: str, context: str = "", llm: str = "openai") -> Dict[str, str]: |
|
""" |
|
Follow-up Q&A via chosen LLM. |
|
""" |
|
_, qa_fn = _get_llm(llm) |
|
try: |
|
ans = await qa_fn(question, context) |
|
except Exception: |
|
ans = "LLM follow-up failed." |
|
return {"answer": ans} |
|
|