MCP_Res / mcp /orchestrator.py
mgbam's picture
Update mcp/orchestrator.py
d7bf01e verified
raw
history blame
3.96 kB
# mcp/orchestrator.py
import asyncio
from typing import Any, Dict, List
from mcp.arxiv import fetch_arxiv
from mcp.pubmed import fetch_pubmed
from mcp.nlp import extract_umls_concepts
from mcp.umls import lookup_umls
from mcp.umls_rel import fetch_relations
from mcp.openfda import fetch_drug_safety
from mcp.ncbi import search_gene, get_mesh_definition
from mcp.disgenet import disease_to_genes
from mcp.clinicaltrials import search_trials
from mcp.mygene import mygene
from mcp.opentargets import ot
from mcp.cbio import cbio
from mcp.openai_utils import ai_summarize, ai_qa
from mcp.gemini import gemini_summarize, gemini_qa
from mcp.embeddings import embed_texts, cluster_embeddings
def _get_llm(llm: str):
"""
Route summarization and QA to the chosen engine.
"""
if llm.lower() == "gemini":
return gemini_summarize, gemini_qa
return ai_summarize, ai_qa
async def orchestrate_search(query: str, llm: str = "openai") -> Dict[str, Any]:
"""
Fetch papers, extract concepts & relations, enrich data,
compute embeddings+clusters, and run LLM summary.
"""
# Gather literature
arxiv_task = fetch_arxiv(query)
pubmed_task = fetch_pubmed(query)
lit_results = await asyncio.gather(arxiv_task, pubmed_task, return_exceptions=True)
papers: List[Dict] = []
for res in lit_results:
if isinstance(res, list):
papers.extend(res)
# Concept extraction
blob = " ".join(p.get("summary", "") for p in papers)
umls = await extract_umls_concepts(blob)
# Fetch UMLS relations
rel_tasks = [fetch_relations(c["cui"]) for c in umls]
umls_relations = await asyncio.gather(*rel_tasks, return_exceptions=True)
# Data enrichment tasks
names = [c["name"] for c in umls]
fda_tasks = [fetch_drug_safety(n) for n in names]
gene_task = search_gene(names[0]) if names else asyncio.sleep(0, result=[])
mesh_task = get_mesh_definition(names[0]) if names else asyncio.sleep(0, result="")
dis_task = disease_to_genes(names[0]) if names else asyncio.sleep(0, result=[])
trials_task = search_trials(query)
ot_task = ot.fetch(names[0]) if names else asyncio.sleep(0, result=[])
cbio_task = cbio.fetch_variants(names[0]) if names else asyncio.sleep(0, result=[])
# Run enrichment
fda, gene, mesh, dis, trials, ot_assoc, variants = await asyncio.gather(
asyncio.gather(*fda_tasks, return_exceptions=True),
gene_task, mesh_task, dis_task,
trials_task, ot_task, cbio_task,
return_exceptions=False
)
# Embeddings & clustering
summaries = [p.get("summary", "") for p in papers]
if summaries:
embeddings = await embed_texts(summaries)
clusters = await cluster_embeddings(
embeddings, n_clusters = max(2, min(10, len(embeddings)//2))
)
else:
embeddings, clusters = [], []
# LLM summary
summarize_fn, _ = _get_llm(llm)
try:
ai_summary = await summarize_fn(blob)
except Exception:
ai_summary = "LLM summary failed."
return {
"papers": papers,
"umls": umls,
"umls_relations": umls_relations,
"drug_safety": fda,
"genes": [gene],
"mesh_defs": [mesh],
"gene_disease": dis,
"clinical_trials": trials,
"ot_associations": ot_assoc,
"variants": variants,
"embeddings": embeddings,
"clusters": clusters,
"ai_summary": ai_summary,
"llm_used": llm.lower()
}
async def answer_ai_question(question: str, context: str = "", llm: str = "openai") -> Dict[str, str]:
"""
Follow-up Q&A via chosen LLM.
"""
_, qa_fn = _get_llm(llm)
try:
ans = await qa_fn(question, context)
except Exception:
ans = "LLM follow-up failed."
return {"answer": ans}