MCP_Res / app.py
mgbam's picture
Update app.py
7e2c73b verified
raw
history blame
8.25 kB
#!/usr/bin/env python3
# MedGenesis AI Β· CPU-only Streamlit app (OpenAI / Gemini)
# ── Streamlit telemetry dir fix ───────────────────────────────────────
import os, pathlib
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
os.environ["XDG_STATE_HOME"] = "/tmp"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
# ── Std-lib / third-party imports ────────────────────────────────────
import asyncio, re
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF # classic FPDF β†’ Latin-1 only
from streamlit_agraph import agraph
# ── Internal helpers ────────────────────────────────────────────────
from mcp.orchestrator import orchestrate_search, answer_ai_question
from mcp.workspace import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
from mcp.alerts import check_alerts
ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"
# ── PDF export helper (UTF-8 β†’ Latin-1 β€œsafe”) ──────────────────────
def _latin1_safe(txt: str) -> str:
"""Return text that FPDF(latin-1) can embed; replace unknown chars."""
return txt.encode("latin-1", "replace").decode("latin-1")
def _pdf(papers):
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
pdf.set_font("Helvetica", size=11)
pdf.cell(200, 8, _latin1_safe("MedGenesis AI – Results"), ln=True, align="C")
pdf.ln(3)
for i, p in enumerate(papers, 1):
pdf.set_font("Helvetica", "B", 11)
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p['title']}"))
pdf.set_font("Helvetica", "", 9)
body = (
f"{p['authors']}\n"
f"{p['summary']}\n"
f"{p['link']}\n"
)
pdf.multi_cell(0, 6, _latin1_safe(body))
pdf.ln(1)
return pdf.output(dest="S").encode("latin-1", "replace")
# ── Sidebar workspace ───────────────────────────────────────────────
def _workspace_sidebar():
with st.sidebar:
st.header("πŸ—‚οΈ Workspace")
ws = get_workspace()
if not ws:
st.info("Run a search then press **Save** to populate this list.")
return
for i, item in enumerate(ws, 1):
with st.expander(f"{i}. {item['query']}"):
st.write(item["result"]["ai_summary"])
# ── Main UI ─────────────────────────────────────────────────────────
def render_ui():
st.set_page_config("MedGenesis AI", layout="wide")
_workspace_sidebar()
# Header
c1, c2 = st.columns([0.15, 0.85])
with c1:
if LOGO.exists():
st.image(str(LOGO), width=105)
with c2:
st.markdown("## 🧬 **MedGenesis AI**")
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
query = st.text_input("Enter biomedical question",
placeholder="e.g. CRISPR glioblastoma therapy")
# Alert check
if get_workspace():
try:
news = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
if news:
with st.sidebar:
st.subheader("πŸ”” New papers")
for q, lnks in news.items():
st.write(f"**{q}** – {len(lnks)} new")
except Exception:
pass
# Run search
if st.button("Run Search πŸš€") and query:
with st.spinner("Collecting literature & biomedical data …"):
res = asyncio.run(orchestrate_search(query, llm=llm))
st.success(f"Completed with **{res['llm_used'].title()}**")
tabs = st.tabs(["Results", "Genes", "Trials", "Graph",
"Metrics", "Visuals"])
# Results
with tabs[0]:
for i, p in enumerate(res["papers"], 1):
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
st.write(p["summary"])
col1, col2 = st.columns(2)
with col1:
st.download_button("CSV",
pd.DataFrame(res["papers"]).to_csv(index=False),
"papers.csv", "text/csv")
with col2:
st.download_button("PDF", _pdf(res["papers"]),
"papers.pdf", "application/pdf")
if st.button("πŸ’Ύ Save"):
save_query(query, res)
st.success("Saved to workspace")
st.subheader("UMLS concepts")
for c in res["umls"]:
if c.get("cui"):
st.write(f"- **{c['name']}** ({c['cui']})")
st.subheader("OpenFDA safety")
for d in res["drug_safety"]:
st.json(d)
st.subheader("AI summary")
st.info(res["ai_summary"])
# Genes
with tabs[1]:
st.header("Gene / Variant signals")
for g in res["genes"]:
st.write(f"- **{g.get('name', g.get('geneid'))}** "
f"{g.get('description', '')}")
if res["gene_disease"]:
st.markdown("### DisGeNET links")
st.json(res["gene_disease"][:15])
if res["mesh_defs"]:
st.markdown("### MeSH definitions")
for d in res["mesh_defs"]:
if d:
st.write("-", d)
# Trials
with tabs[2]:
st.header("Clinical trials")
if not res["clinical_trials"]:
st.info("No trials (rate-limited or none found).")
for t in res["clinical_trials"]:
st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
st.write(f"Phase {t.get('Phase', [''])[0]} "
f"| Status {t['OverallStatus'][0]}")
# Graph
with tabs[3]:
nodes, edges, cfg = build_agraph(res["papers"],
res["umls"],
res["drug_safety"])
hl = st.text_input("Highlight node:", key="hl")
if hl:
pat = re.compile(re.escape(hl), re.I)
for n in nodes:
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
agraph(nodes, edges, cfg)
# Metrics
with tabs[4]:
G = build_nx([n.__dict__ for n in nodes],
[e.__dict__ for e in edges])
st.metric("Density", f"{get_density(G):.3f}")
st.markdown("**Top hubs**")
for nid, sc in get_top_hubs(G):
lab = next((n.label for n in nodes if n.id == nid), nid)
st.write(f"- {lab} {sc:.3f}")
# Visuals
with tabs[5]:
years = [p["published"] for p in res["papers"] if p.get("published")]
if years:
st.plotly_chart(px.histogram(years, nbins=12,
title="Publication Year"))
# Follow-up Q-A
st.markdown("---")
follow = st.text_input("Ask follow-up:")
if st.button("Ask AI"):
ans = asyncio.run(answer_ai_question(follow,
context=query,
llm=llm))
st.write(ans["answer"])
else:
st.info("Enter a question and press **Run Search πŸš€**")
# entry-point
if __name__ == "__main__":
render_ui()