Update app.py
Browse files
app.py
CHANGED
@@ -1,148 +1,164 @@
|
|
1 |
-
# app.py
|
2 |
|
3 |
-
import asyncio, os, re
|
4 |
from pathlib import Path
|
5 |
-
|
6 |
import streamlit as st
|
7 |
import pandas as pd
|
8 |
import plotly.express as px
|
9 |
from fpdf import FPDF
|
10 |
from streamlit_agraph import agraph
|
11 |
|
12 |
-
from mcp.orchestrator
|
13 |
-
from mcp.workspace
|
14 |
from mcp.knowledge_graph import build_agraph
|
|
|
|
|
15 |
|
16 |
ROOT = Path(__file__).parent
|
17 |
LOGO = ROOT / "assets" / "logo.png"
|
18 |
|
19 |
-
#
|
20 |
-
def
|
21 |
pdf = FPDF(); pdf.add_page(); pdf.set_font("Arial", size=12)
|
22 |
-
pdf.cell(200, 10, "MedGenesis AI
|
23 |
-
pdf.ln(10)
|
24 |
for i, p in enumerate(papers, 1):
|
25 |
-
pdf.set_font("Arial", "B", 12)
|
26 |
-
pdf.
|
27 |
-
pdf.
|
28 |
-
pdf.multi_cell(0, 8,
|
29 |
-
f"Authors: {p['authors']}\nLink: {p['link']}\nSummary: {p['summary']}\n")
|
30 |
pdf.ln(2)
|
31 |
return pdf.output(dest="S").encode("latin-1")
|
32 |
|
33 |
-
#
|
34 |
def render_ui():
|
35 |
st.set_page_config(page_title="MedGenesis AI", layout="wide")
|
36 |
|
37 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
with st.sidebar:
|
39 |
st.header("ποΈ Workspace")
|
40 |
-
for i,
|
41 |
-
with st.expander(f"{i}. {
|
42 |
-
st.write("
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
if not get_workspace():
|
46 |
-
st.info("
|
47 |
|
48 |
-
#
|
49 |
col1, col2 = st.columns([0.15, 0.85])
|
50 |
with col1:
|
51 |
if LOGO.exists(): st.image(str(LOGO), width=100)
|
52 |
with col2:
|
53 |
-
st.markdown("## 𧬠MedGenesis AI")
|
54 |
-
st.
|
55 |
|
56 |
st.markdown("---")
|
57 |
-
query = st.text_input("π
|
|
|
58 |
|
59 |
-
# ------------- Search -------------
|
60 |
if st.button("Run Search π") and query:
|
61 |
-
with st.spinner("
|
62 |
-
|
63 |
-
st.success("
|
64 |
|
65 |
-
# -------- Tabs ---------
|
66 |
tabs = st.tabs([
|
67 |
-
"
|
68 |
-
"πΊοΈ Graph", "π Visuals"
|
69 |
])
|
70 |
|
71 |
-
#
|
72 |
with tabs[0]:
|
73 |
st.header("π Top Papers")
|
74 |
-
for i, p in enumerate(
|
75 |
-
st.markdown(f"**{i}. [{p['title']}]({p['link']})**
|
76 |
st.markdown(f"<span style='color:gray'>{p['summary']}</span>", unsafe_allow_html=True)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
st.
|
84 |
-
|
85 |
-
st.subheader("π§ UMLS Concepts")
|
86 |
-
for c in results["umls"]:
|
87 |
if c.get("cui"):
|
88 |
-
st.
|
89 |
|
90 |
st.subheader("π Drug Safety (OpenFDA)")
|
91 |
-
for d in
|
92 |
-
st.json(d)
|
93 |
|
94 |
-
st.subheader("π€ AI
|
95 |
-
st.info(
|
96 |
|
97 |
-
#
|
98 |
with tabs[1]:
|
99 |
-
st.header("𧬠Gene
|
100 |
-
for g in
|
101 |
st.write(f"- **{g.get('name', g.get('geneid'))}** β {g.get('description','')}")
|
102 |
-
if
|
103 |
-
st.
|
104 |
-
st.json(
|
105 |
-
if
|
106 |
-
st.
|
107 |
-
for d in
|
108 |
-
|
109 |
-
|
110 |
-
# -- Clinical Trials ----------
|
111 |
with tabs[2]:
|
112 |
st.header("π Registered Clinical Trials")
|
113 |
-
|
|
|
|
|
114 |
st.markdown(f"**{t['NCTId'][0]}** β {t['BriefTitle'][0]}")
|
115 |
-
st.write(f"
|
116 |
|
117 |
-
#
|
118 |
with tabs[3]:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
# -- Visualizations ----------
|
132 |
with tabs[4]:
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
if yrs: st.plotly_chart(px.histogram(yrs, nbins=10, title="Publication Year"))
|
135 |
|
136 |
-
#
|
137 |
st.markdown("---")
|
138 |
-
q = st.text_input("Ask follow-up:"
|
139 |
if st.button("Ask AI"):
|
140 |
-
|
141 |
-
st.write(ans["answer"])
|
142 |
-
|
143 |
else:
|
144 |
st.info("Enter a question and press **Run Search π**")
|
145 |
|
146 |
-
#
|
147 |
if __name__ == "__main__":
|
148 |
render_ui()
|
|
|
1 |
+
# app.py β’ MedGenesis AI β CPU-only powerhouse
|
2 |
|
3 |
+
import asyncio, os, re, httpx
|
4 |
from pathlib import Path
|
|
|
5 |
import streamlit as st
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
8 |
from fpdf import FPDF
|
9 |
from streamlit_agraph import agraph
|
10 |
|
11 |
+
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
12 |
+
from mcp.workspace import get_workspace, save_query
|
13 |
from mcp.knowledge_graph import build_agraph
|
14 |
+
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
15 |
+
from mcp.alerts import check_alerts
|
16 |
|
17 |
ROOT = Path(__file__).parent
|
18 |
LOGO = ROOT / "assets" / "logo.png"
|
19 |
|
20 |
+
# ---------- utilities ----------
|
21 |
+
def gen_pdf(papers):
|
22 |
pdf = FPDF(); pdf.add_page(); pdf.set_font("Arial", size=12)
|
23 |
+
pdf.cell(200, 10, "MedGenesis AI β Results", ln=True, align="C"); pdf.ln(10)
|
|
|
24 |
for i, p in enumerate(papers, 1):
|
25 |
+
pdf.set_font("Arial", "B", 12); pdf.multi_cell(0, 10, f"{i}. {p['title']}")
|
26 |
+
pdf.set_font("Arial", "", 9)
|
27 |
+
pdf.multi_cell(0, 7, f"Authors: {p['authors']}\n{p['summary']}\n{p['link']}\n")
|
|
|
|
|
28 |
pdf.ln(2)
|
29 |
return pdf.output(dest="S").encode("latin-1")
|
30 |
|
31 |
+
# ---------- UI ----------
|
32 |
def render_ui():
|
33 |
st.set_page_config(page_title="MedGenesis AI", layout="wide")
|
34 |
|
35 |
+
# π Alert check (non-blocking)
|
36 |
+
saved_qs = [w["query"] for w in get_workspace()]
|
37 |
+
if saved_qs:
|
38 |
+
try:
|
39 |
+
news = asyncio.run(check_alerts(saved_qs))
|
40 |
+
if news:
|
41 |
+
with st.sidebar:
|
42 |
+
st.subheader("π New Papers")
|
43 |
+
for q, links in news.items():
|
44 |
+
st.write(f"**{q}** β {len(links)} new")
|
45 |
+
except Exception as e:
|
46 |
+
st.sidebar.error(f"Alert check error: {e}")
|
47 |
+
|
48 |
+
# Workspace sidebar
|
49 |
with st.sidebar:
|
50 |
st.header("ποΈ Workspace")
|
51 |
+
for i, itm in enumerate(get_workspace(), 1):
|
52 |
+
with st.expander(f"{i}. {itm['query']}"):
|
53 |
+
st.write("AI summary:", itm["result"]["ai_summary"])
|
54 |
+
st.download_button(
|
55 |
+
"CSV", pd.DataFrame(itm["result"]["papers"]).to_csv(index=False),
|
56 |
+
f"ws_{i}.csv", "text/csv"
|
57 |
+
)
|
58 |
if not get_workspace():
|
59 |
+
st.info("No saved queries.")
|
60 |
|
61 |
+
# Header
|
62 |
col1, col2 = st.columns([0.15, 0.85])
|
63 |
with col1:
|
64 |
if LOGO.exists(): st.image(str(LOGO), width=100)
|
65 |
with col2:
|
66 |
+
st.markdown("## 𧬠**MedGenesis AI**")
|
67 |
+
st.caption("PubMed β’ ArXiv β’ OpenFDA β’ UMLS β’ NCBI β’ DisGeNET β’ ClinicalTrials β’ GPT-4o")
|
68 |
|
69 |
st.markdown("---")
|
70 |
+
query = st.text_input("π Ask a biomedical research question:",
|
71 |
+
placeholder="e.g. CRISPR glioblastoma treatment")
|
72 |
|
|
|
73 |
if st.button("Run Search π") and query:
|
74 |
+
with st.spinner("Crunching literature & biomedical databasesβ¦"):
|
75 |
+
res = asyncio.run(orchestrate_search(query))
|
76 |
+
st.success("Done!")
|
77 |
|
|
|
78 |
tabs = st.tabs([
|
79 |
+
"Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"
|
|
|
80 |
])
|
81 |
|
82 |
+
# --- Results ---
|
83 |
with tabs[0]:
|
84 |
st.header("π Top Papers")
|
85 |
+
for i, p in enumerate(res["papers"], 1):
|
86 |
+
st.markdown(f"**{i}. [{p['title']}]({p['link']})** β *{p['authors']}*")
|
87 |
st.markdown(f"<span style='color:gray'>{p['summary']}</span>", unsafe_allow_html=True)
|
88 |
+
if st.button("Save Query"):
|
89 |
+
save_query(query, res); st.success("Saved to workspace")
|
90 |
+
csv = pd.DataFrame(res["papers"]).to_csv(index=False)
|
91 |
+
st.download_button("CSV", csv, "papers.csv", "text/csv")
|
92 |
+
st.download_button("PDF", gen_pdf(res["papers"]), "papers.pdf", "application/pdf")
|
93 |
+
|
94 |
+
st.subheader("π§ Key UMLS Concepts")
|
95 |
+
for c in res["umls"]:
|
|
|
|
|
96 |
if c.get("cui"):
|
97 |
+
st.write(f"- **{c['name']}** ({c['cui']})")
|
98 |
|
99 |
st.subheader("π Drug Safety (OpenFDA)")
|
100 |
+
for d in res["drug_safety"]: st.json(d)
|
|
|
101 |
|
102 |
+
st.subheader("π€ AI Synthesis")
|
103 |
+
st.info(res["ai_summary"])
|
104 |
|
105 |
+
# --- Genes / Variants ---
|
106 |
with tabs[1]:
|
107 |
+
st.header("𧬠Gene & Variant Signals")
|
108 |
+
for g in res["genes"]:
|
109 |
st.write(f"- **{g.get('name', g.get('geneid'))}** β {g.get('description','')}")
|
110 |
+
if res["gene_disease"]:
|
111 |
+
st.write("### DisGeNET Links")
|
112 |
+
st.json(res["gene_disease"][:15])
|
113 |
+
if res["mesh_defs"]:
|
114 |
+
st.write("### MeSH Definitions")
|
115 |
+
for d in res["mesh_defs"]: st.write("-", d)
|
116 |
+
|
117 |
+
# --- Clinical Trials ---
|
|
|
118 |
with tabs[2]:
|
119 |
st.header("π Registered Clinical Trials")
|
120 |
+
if not res["clinical_trials"]:
|
121 |
+
st.info("No trials (API rate-limited or none found).")
|
122 |
+
for t in res["clinical_trials"]:
|
123 |
st.markdown(f"**{t['NCTId'][0]}** β {t['BriefTitle'][0]}")
|
124 |
+
st.write(f"Phase: {t.get('Phase', [''])[0]} | Status: {t['OverallStatus'][0]}")
|
125 |
|
126 |
+
# --- Knowledge Graph ---
|
127 |
with tabs[3]:
|
128 |
+
st.header("πΊοΈ Knowledge Graph")
|
129 |
+
nodes, edges, cfg = build_agraph(res["papers"], res["umls"], res["drug_safety"])
|
130 |
+
highlight = st.text_input("Highlight nodes:", key="hl")
|
131 |
+
if highlight:
|
132 |
+
pat = re.compile(re.escape(highlight), re.I)
|
133 |
+
for n in nodes:
|
134 |
+
if pat.search(n.label): n.color, n.size = "#f1c40f", 30
|
135 |
+
else: n.color = "#d3d3d3"
|
136 |
+
agraph(nodes=nodes, edges=edges, config=cfg)
|
137 |
+
|
138 |
+
# --- Metrics ---
|
|
|
|
|
139 |
with tabs[4]:
|
140 |
+
st.header("π Graph Metrics")
|
141 |
+
import networkx as nx
|
142 |
+
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
143 |
+
st.metric("Density", f"{get_density(G):.3f}")
|
144 |
+
st.markdown("#### Hub Nodes")
|
145 |
+
for nid, sc in get_top_hubs(G):
|
146 |
+
lab = next((n.label for n in nodes if n.id == nid), nid)
|
147 |
+
st.write(f"- **{lab}** β {sc:.3f}")
|
148 |
+
|
149 |
+
# --- Visuals ---
|
150 |
+
with tabs[5]:
|
151 |
+
yrs = [p["published"] for p in res["papers"] if p.get("published")]
|
152 |
if yrs: st.plotly_chart(px.histogram(yrs, nbins=10, title="Publication Year"))
|
153 |
|
154 |
+
# --- Follow-up Q&A ---
|
155 |
st.markdown("---")
|
156 |
+
q = st.text_input("Ask follow-up question:")
|
157 |
if st.button("Ask AI"):
|
158 |
+
st.write(asyncio.run(answer_ai_question(q, context=query))["answer"])
|
|
|
|
|
159 |
else:
|
160 |
st.info("Enter a question and press **Run Search π**")
|
161 |
|
162 |
+
# Run
|
163 |
if __name__ == "__main__":
|
164 |
render_ui()
|